Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (5): 2997-3008.DOI: 10.16085/j.issn.1000-6613.2024-1790
• Chemical processes emission reduction • Previous Articles
BAO Jie1(
), YU Panjie1, MA Yongde1, ZHANG Hongwei1,2(
), CAI Zhenping1, CAO Yanning1, HUANG Kuan1,2, JIANG Lilong1,2(
)
Received:2024-11-04
Revised:2025-01-16
Online:2025-05-20
Published:2025-05-25
Contact:
ZHANG Hongwei, JIANG Lilong
鲍婕1(
), 余攀结1, 马永德1, 张宏伟1,2(
), 蔡镇平1, 曹彦宁1, 黄宽1,2, 江莉龙1,2(
)
通讯作者:
张宏伟,江莉龙
作者简介:鲍婕(1989—),女,实验师,研究方向为生物质油加氢转化。E-mail:baojie@fzu.edu.cn。
基金资助:CLC Number:
BAO Jie, YU Panjie, MA Yongde, ZHANG Hongwei, CAI Zhenping, CAO Yanning, HUANG Kuan, JIANG Lilong. Design of Cu-ZrO2 catalyst and its utilization in hydrogenation of methyl palmitate to fatty alcohols[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2997-3008.
鲍婕, 余攀结, 马永德, 张宏伟, 蔡镇平, 曹彦宁, 黄宽, 江莉龙. Cu-ZrO2催化材料的制备及其棕榈酸甲酯加氢制脂肪醇性能[J]. 化工进展, 2025, 44(5): 2997-3008.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1790
| 样品 | 铜质量 分数①/% | DCuO①/nm | DCu②/nm | SBET①/m2·g-1 | Vp①/cm3·g-1 | Dp①/nm |
|---|---|---|---|---|---|---|
| 3Cu-ZrO2 | 3.2 | ND③ | ND③ | 26 | 0.043 | 5.4 |
| 5Cu-ZrO2 | 4.9 | ND③ | ND③ | 46 | 0.066 | 5.4 |
| 10Cu-ZrO2 | 10.0 | 17.1 | 40.1 | 45 | 0.077 | 6.6 |
| 15Cu-ZrO2 | 15.6 | 17.6 | 41.8 | 35 | 0.074 | 5.5 |
| 20Cu-ZrO2 | 23.6 | 19.3 | 52.5 | 38 | 0.075 | 5.6 |
| 样品 | 铜质量 分数①/% | DCuO①/nm | DCu②/nm | SBET①/m2·g-1 | Vp①/cm3·g-1 | Dp①/nm |
|---|---|---|---|---|---|---|
| 3Cu-ZrO2 | 3.2 | ND③ | ND③ | 26 | 0.043 | 5.4 |
| 5Cu-ZrO2 | 4.9 | ND③ | ND③ | 46 | 0.066 | 5.4 |
| 10Cu-ZrO2 | 10.0 | 17.1 | 40.1 | 45 | 0.077 | 6.6 |
| 15Cu-ZrO2 | 15.6 | 17.6 | 41.8 | 35 | 0.074 | 5.5 |
| 20Cu-ZrO2 | 23.6 | 19.3 | 52.5 | 38 | 0.075 | 5.6 |
| 项目 | 样品 | 俄歇电子能量/eV | ||
|---|---|---|---|---|
| Cu0 | Cu+ | Cu2+ | ||
| 0 | 标准样 | 1851 | 1848.9 | 1851.4 |
| 1 | 3Cu-ZrO2 | — | 1847.0 | 1850.5 |
| 5Cu-ZrO2 | — | 1847.0 | 1851.3 | |
| 10Cu-ZrO2 | — | 1846.8 | 1851.4 | |
| 15Cu-ZrO2 | — | 1846.9 | 1851.6 | |
| 20Cu-ZrO2 | — | 1846.6 | 1851.6 | |
| 2 | 3Cu-ZrO2 | 1850.4 | 1846.7 | 1850.5 |
| 5Cu-ZrO2 | 1850.2 | 1846.8 | 1850.2 | |
| 10Cu-ZrO2 | 1850.4 | 1846.8 | 1850.5 | |
| 15Cu-ZrO2 | 1850.1 | 1846.4 | 1849.9 | |
| 20Cu-ZrO2 | 1850.2 | 1846.5 | 1850.5 | |
| 项目 | 样品 | 俄歇电子能量/eV | ||
|---|---|---|---|---|
| Cu0 | Cu+ | Cu2+ | ||
| 0 | 标准样 | 1851 | 1848.9 | 1851.4 |
| 1 | 3Cu-ZrO2 | — | 1847.0 | 1850.5 |
| 5Cu-ZrO2 | — | 1847.0 | 1851.3 | |
| 10Cu-ZrO2 | — | 1846.8 | 1851.4 | |
| 15Cu-ZrO2 | — | 1846.9 | 1851.6 | |
| 20Cu-ZrO2 | — | 1846.6 | 1851.6 | |
| 2 | 3Cu-ZrO2 | 1850.4 | 1846.7 | 1850.5 |
| 5Cu-ZrO2 | 1850.2 | 1846.8 | 1850.2 | |
| 10Cu-ZrO2 | 1850.4 | 1846.8 | 1850.5 | |
| 15Cu-ZrO2 | 1850.1 | 1846.4 | 1849.9 | |
| 20Cu-ZrO2 | 1850.2 | 1846.5 | 1850.5 | |
| 项目 | 样品 | 动能/eV | 比例/% | bCu0/Cu+ | ||||
|---|---|---|---|---|---|---|---|---|
| Cu0 | Cu+ | Cu2+ | aCu0 | aCu+ | aCu2+ | |||
| 1 | 3Cu-ZrO2 | — | 914.4 | 917.1 | — | 54.3 | 45.7 | — |
| 5Cu-ZrO2 | — | 914.5 | 917.4 | — | 50.1 | 49.9 | — | |
| 10Cu-ZrO2 | — | 914.2 | 917.6 | — | 37.9 | 62.1 | — | |
| 15Cu-ZrO2 | — | 914.2 | 917.7 | — | 34.1 | 65.9 | — | |
| 20Cu-ZrO2 | — | 913.7 | 917.5 | — | 31.6 | 68.4 | — | |
| 2 | 3Cu-ZrO2 | 918.0 | 914.3 | 916.5 | 21.4 | 40.9 | 37.8 | 0.52 |
| 5Cu-ZrO2 | 917.9 | 914.4 | 916.4 | 27.0 | 39.8 | 33.1 | 0.68 | |
| 10Cu-ZrO2 | 917.7 | 914.3 | 916.4 | 33.5 | 31.0 | 35.5 | 1.08 | |
| 15Cu-ZrO2 | 917.8 | 914.2 | 916.6 | 26.4 | 27.7 | 45.9 | 0.95 | |
| 20Cu-ZrO2 | 918.0 | 914.3 | 916.7 | 24.3 | 28.6 | 47.1 | 0.85 | |
| 项目 | 样品 | 动能/eV | 比例/% | bCu0/Cu+ | ||||
|---|---|---|---|---|---|---|---|---|
| Cu0 | Cu+ | Cu2+ | aCu0 | aCu+ | aCu2+ | |||
| 1 | 3Cu-ZrO2 | — | 914.4 | 917.1 | — | 54.3 | 45.7 | — |
| 5Cu-ZrO2 | — | 914.5 | 917.4 | — | 50.1 | 49.9 | — | |
| 10Cu-ZrO2 | — | 914.2 | 917.6 | — | 37.9 | 62.1 | — | |
| 15Cu-ZrO2 | — | 914.2 | 917.7 | — | 34.1 | 65.9 | — | |
| 20Cu-ZrO2 | — | 913.7 | 917.5 | — | 31.6 | 68.4 | — | |
| 2 | 3Cu-ZrO2 | 918.0 | 914.3 | 916.5 | 21.4 | 40.9 | 37.8 | 0.52 |
| 5Cu-ZrO2 | 917.9 | 914.4 | 916.4 | 27.0 | 39.8 | 33.1 | 0.68 | |
| 10Cu-ZrO2 | 917.7 | 914.3 | 916.4 | 33.5 | 31.0 | 35.5 | 1.08 | |
| 15Cu-ZrO2 | 917.8 | 914.2 | 916.6 | 26.4 | 27.7 | 45.9 | 0.95 | |
| 20Cu-ZrO2 | 918.0 | 914.3 | 916.7 | 24.3 | 28.6 | 47.1 | 0.85 | |
| 样品 | Tα/℃ | Tβ/℃ | Tγ/℃ | [Aα/(Aα+Aβ+Aγ)]/% | [Aβ/(Aα+Aβ+Aγ)]/% |
|---|---|---|---|---|---|
| 3Cu-ZrO2 | 141.7 | 205.0 | — | 33.5 | 66.5 |
| 5Cu-ZrO2 | 153.7 | 204.5 | — | 53.7 | 46.3 |
| 10Cu-ZrO2 | 165.7 | 220.1 | 235.2 | 40.1 | 35.2 |
| 15Cu-ZrO2 | 163.4 | 213.1 | 233.4 | 31.8 | 48.8 |
| 20Cu-ZrO2 | 184.5 | 234.7 | 255.3 | 29.6 | 47.1 |
| 样品 | Tα/℃ | Tβ/℃ | Tγ/℃ | [Aα/(Aα+Aβ+Aγ)]/% | [Aβ/(Aα+Aβ+Aγ)]/% |
|---|---|---|---|---|---|
| 3Cu-ZrO2 | 141.7 | 205.0 | — | 33.5 | 66.5 |
| 5Cu-ZrO2 | 153.7 | 204.5 | — | 53.7 | 46.3 |
| 10Cu-ZrO2 | 165.7 | 220.1 | 235.2 | 40.1 | 35.2 |
| 15Cu-ZrO2 | 163.4 | 213.1 | 233.4 | 31.8 | 48.8 |
| 20Cu-ZrO2 | 184.5 | 234.7 | 255.3 | 29.6 | 47.1 |
| 样品 | 弱酸 /℃ | 弱酸 /℃ | 中强酸 /℃ | 强酸 /℃ | 弱酸 /% | 中强酸 /% | 强酸 /% |
|---|---|---|---|---|---|---|---|
| 3Cu-ZrO2 | 135.0 | 232.3 | 393.0 | 735.8 | 42.2 | 50.8 | 7.0 |
| 5Cu-ZrO2 | 106.9 | 218.1 | 381.1 | — | 62.8 | 37.2 | — |
| 10Cu-ZrO2 | 120.7 | 219.3 | 399.3 | — | 71.6 | 28.4 | — |
| 15Cu-ZrO2 | 116.4 | 190.0 | 367.3 | — | 46.6 | 53.4 | — |
| 20Cu-ZrO2 | 109.6 | 192.1 | 370.3 | — | 65.0 | 35.0 | — |
| 样品 | 弱酸 /℃ | 弱酸 /℃ | 中强酸 /℃ | 强酸 /℃ | 弱酸 /% | 中强酸 /% | 强酸 /% |
|---|---|---|---|---|---|---|---|
| 3Cu-ZrO2 | 135.0 | 232.3 | 393.0 | 735.8 | 42.2 | 50.8 | 7.0 |
| 5Cu-ZrO2 | 106.9 | 218.1 | 381.1 | — | 62.8 | 37.2 | — |
| 10Cu-ZrO2 | 120.7 | 219.3 | 399.3 | — | 71.6 | 28.4 | — |
| 15Cu-ZrO2 | 116.4 | 190.0 | 367.3 | — | 46.6 | 53.4 | — |
| 20Cu-ZrO2 | 109.6 | 192.1 | 370.3 | — | 65.0 | 35.0 | — |
| 1 | SANDERSON Hans, BELANGER Scott E, FISK Peter R, et al. An overview of hazard and risk assessment of the OECD high production volume chemical category—Long chain alcohols [C6-C22](LCOH)[J]. Ecotoxicology and Environmental Safety, 2009, 72(4): 973-979. |
| 2 | 卢鹏, 许世海, 王昊康, 等. 短链脂肪醇开环改性环氧脂肪酸甲酯制备润滑油基础油[J]. 中国油脂, 2022, 47(5): 29-34. |
| LU Peng, XU Shihai, WANG Haokang, et al. Lubricating oil base oil prepared by ring-opening modification of epoxy fatty acid methyl ester with short chain fatty alcohol[J]. China Oils and Fats, 2022, 47(5): 29-34. | |
| 3 | 相若函, 杜玮, 伊钟毓, 等. 脂肪醇聚氧乙烯醚衍生物在动车组外表面清洗剂的应用性能研究[J]. 高速铁路新材料, 2023, 2(6): 63-68. |
| XIANG Ruohan, DU Wei, YI Zhongyu, et al. Study on the application performance of fatty alcohol polyoxyethylene ether derivatives in cleaners for EMU/DMU exterior surface[J]. Advanced Materials of High Speed Railway, 2023, 2(6): 63-68. | |
| 4 | 肖娜, 曹圣悌, 高春新, 等. 不同反离子脂肪醇硫酸盐性能研究[J]. 中国洗涤用品工业, 2024(3): 62-66. |
| XIAO Na, CAO Shengti, GAO Chunxin, et al. Performance of fatty alcohol sulfates with different counter ions[J]. China Cleaning Industry, 2024(3): 62-66. | |
| 5 | JIA Wenda, XU Guangyue, LIU Xiaohao, et al. Direct selective hydrogenation of fatty acids and jatropha oil to fatty alcohols over cobalt-based catalysts in water[J]. Energy & Fuels, 2018, 32(8): 8438-8446. |
| 6 | SÁNCHEZ Maria A, TORRES Gerardo C, MAZZIERI Vanina A, et al. Selective hydrogenation of fatty acids and methyl esters of fatty acids to obtain fatty alcohols—A review[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(1): 27-42. |
| 7 | ZHOU Jilong, XIE Wei, SUN Song, et al. Effects of activation atmospheres on structure and activity of Mo-based catalyst for synthesis of higher alcohols[J]. Chinese Journal of Chemical Physics, 2016, 29(4): 467-473, 524. |
| 8 | 陈德君, 张可航, 朱志荣, 等. Pt/WO3-TiO2/ZrO2-Al2O3甘油加氢体系中Al2O3的双功能作用[J]. 精细化工, 2022, 39(10): 2078-2085. |
| CHEN Dejun, ZHANG Kehang, Zhu Zhirong, et al. Bifunctional role of Al2O3 in Pt/WO3-TiO2/ZrO2-Al2O3 catalyst for hydrogenolysis of glycerol to 1,3-propanediol[J]. Fine Chemicals, 2022, 39(10): 2078-2085. | |
| 9 | 刘朋, 蒋剑春, 陈水根, 等. 高酸值废弃油脂制备生物柴油的预酯化[J]. 化工进展, 2015, 34(8): 3015-3018, 3064. |
| LIU Peng, JIANG Jianchun, CHEN Shuigen, et al. Pre-esterification in the preparation of biodiesel from waste oil with high acid value[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 3015-3018, 3064. | |
| 10 | THAKUR Deepak S, ROBERTS Brian D, WHITE Geoffrey T, et al. Fatty methyl ester hydrogenation to fatty alcohol: Reaction inhibition by glycerine and monoglyceride[J]. Journal of the American Oil Chemists’ Society, 1999, 76(8): 995-1000. |
| 11 | RODINA V O, D Yu ERMAKOV, SARAEV A A, et al. Influence of reaction conditions and kinetic analysis of the selective hydrogenation of oleic acid toward fatty alcohols on Ru-Sn-B/Al2O3 in the flow reactor[J]. Applied Catalysis B: Environmental, 2017, 209: 611-620. |
| 12 | LUO Zhicheng, BING Qiming, KONG Jiechen, et al. Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols[J]. Catalysis Science & Technology, 2018, 8(5): 1322-1332. |
| 13 | CAO Xincheng, ZHAO Jiaping, LONG Feng, et al. Efficient low-temperature hydrogenation of fatty acids to fatty alcohols and alkanes on a Ni-Re bimetallic catalyst: The crucial role of NiRe alloys[J]. Applied Catalysis B: Environmental, 2022, 312: 121437. |
| 14 | LONG Feng, WU Shiyu, CHEN Yuwei, et al. Hydrogenation of fatty acids to fatty alcohols over Ni3Fe nanoparticles anchored on TiO2 crystal catalyst: Metal support interaction and mechanism investigation[J]. Chemical Engineering Journal, 2023, 464: 142773. |
| 15 | KANDEL Kapil, CHAUDHARY Umesh, NELSON Nicholas C, et al. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids[J]. ACS Catalysis, 2015, 5(11): 6719-6723. |
| 16 | SMIRNOV Andrey, WANG Wei, KIKHTYANIN Oleg, et al. Hydroconversion of sunflower oil to fatty alcohols and hydrocarbons using CuZn and CuZn-HBEA-based catalysts[J]. Catalysis Today, 2023, 424: 113841. |
| 17 | YUAN Peng, LIU Zhongyi, ZHANG Wanqing, et al. Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols[J]. Chinese Journal of Catalysis, 2010, 31(7): 769-775. |
| 18 | WEN Chao, YIN Anyuan, CUI Yuanyuan, et al. Enhanced catalytic performance for SiO2-TiO2 binary oxide supported Cu-based catalyst in the hydrogenation of dimethyloxalate[J]. Applied Catalysis A: General, 2013, 458: 82-89. |
| 19 | YIN Anyuan, GUO Xiuying, DAI Wei-Lin, et al. The nature of active copper species in Cu-HMS catalyst for hydrogenation of dimethyl oxalate to ethylene glycol: New insights on the synergetic effect between Cu0 and Cu+ [J]. The Journal of Physical Chemistry C, 2009, 113(25): 11003-11013. |
| 20 | HE Zhe, LIN Haiqiang, HE Ping, et al. Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol[J]. Journal of Catalysis, 2011, 277(1): 54-63. |
| 21 | LIN Haiqiang, ZHENG Xinlei, HE Zhe, et al. Cu/SiO2 hybrid catalysts containing HZSM-5 with enhanced activity and stability for selective hydrogenation of dimethyl oxalate to ethylene glycol[J]. Applied Catalysis A: General, 2012, 445: 287-296. |
| 22 | WANG Yue, SHEN Yongli, ZHAO Yujun, et al. Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds[J]. ACS Catalysis, 2015, 5(10): 6200-6208. |
| 23 | ZHENG Xiaohai, YU Panjie, LIU Yaxin, et al. Efficient hydrogenation of methyl palmitate to hexadecanol over Cu/m-ZrO2 catalysts: Synergistic effect of Cu species and oxygen vacancies[J]. ACS Catalysis, 2023: 2047-2060. |
| 24 | NAUMENKO Antonina P, BEREZOVSKA Natalia I, BILIY M M, et al. Vibrational analysis and Raman spectra of tetragonal Zirconia[J]. Physics and Chemistry of Solid State, 2008, 9(1): 121-125. |
| 25 | SIU G G, STOKES M J, LIU Yulong. Variation of fundamental and higher-order Raman spectra of ZrO2 nanograins with annealing temperature[J]. Physical Review B, 1999, 59(4): 3173-3179. |
| 26 | DARAMOLA Damilola A, MUTHUVEL Madhivanan, BOTTE Gerardine G. Density functional theory analysis of Raman frequency modes of monoclinic zirconium oxide using Gaussian basis sets and isotopic substitution[J]. Journal of Physical Chemistry B, 2010, 114(29): 9323-9329. |
| 27 | XU J F, JI W, SHEN Z X, et al. Preparation and characterization of CuO nanocrystals[J]. Journal of Solid State Chemistry, 1999, 147(2): 516-519. |
| 28 | ZHANG Hongwei, TAN Hui-Ru, JAENICKE Stephan, et al. Highly efficient and robust Cu catalyst for non-oxidative dehydrogenation of ethanol to acetaldehyde and hydrogen[J]. Journal of Catalysis, 2020, 389: 19-28. |
| 29 | ZHEN Wenlong, JIAO Wenjun, WU Yuqi, et al. The role of a metallic copper interlayer during visible photocatalytic hydrogen generation over a Cu/Cu2O/Cu/TiO2 catalyst[J]. Catalysis Science & Technology, 2017, 7(21): 5028-5037. |
| 30 | TOBIN John P, HIRSCHWALD W, CUNNINGHAM J. XPS and XAES studies of transient enhancement of Cu1 at CuO surfaces during vacuum outgassing[J]. Applications of Surface Science, 1983, 16(3/4): 441-452. |
| 31 | 李晓莉, 谢方艳, 龚力, 等.氩离子刻蚀还原氧化铜的XPS研究[J]. 分析测试学报, 2013,32(5): 535-540. |
| LI Xiaoli, XIE Fangyan, GONG Li, et al. Effect of argon ion bombardment on copper oxide studied by X-ray photoelectron spectroscopy[J]. Journal of Instrumental Analysis, 2013, 32(5): 535-540. |
| [1] | NIE Hong, XI Yuanbing, GE Panzhu, DING Shi, ZHANG Dengqian. Sustainable aviation fuel production technology and prospects [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2529-2534. |
| [2] | SU Junjie, LIU Su, ZHOU Haibo, LIU Chang, ZHANG Lin, WANG Yangdong, XIE Zaiku. InZr/SAPO-34 bifunctional catalyst for direct production of light olefins from CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2870-2878. |
| [3] | MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937. |
| [4] | JIA Yijing, TAO Jinquan, HUANG Wenbin, LIU Haoran, LI Rongrong, YAO Rongpeng, BAI Tianyu, WEI Qiang, ZHOU Yasong. Research progress on iron-based catalysts for CO2 hydrogenation to low carbon olefins [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 820-833. |
| [5] | ZHANG Huanling, MA Huixia, ZHOU Feng, ZHAO Chenghao, ZHU Xiaolin, WANG Guowei, LI Chunyi. Effect of introduced In species on propane dehydrogenation over Ge/SiO2 catalyst [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 879-886. |
| [6] | QIN Tingting, NIU Qiang. Research progress on Fe-based catalysts for CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 253-265. |
| [7] | WANG Bo, WANG Bin, GONG Xiang, YANG Fusheng, FANG Tao. Enhancing dehydrogenation performance of liquid organic hydrogen carriers based on reactor design: Research progress [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 189-208. |
| [8] | XIONG Lei, DING Feiyan, LI Cong, WANG Qunle, LYU Qi, ZHAI Xiaona, LIU Feng. Recent advances in metal Pt supported heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 295-304. |
| [9] | GAO Congzhi, ZHANG Yaxuan, LIN Lu, DENG Xiaoting, YIN Xia, DING Yigang, XIAO Yanhua, DU Zhiping. Synthesis process of neopentyl glycol [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 469-478. |
| [10] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
| [11] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
| [12] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
| [13] | ZENG Zhuang, LI Kezhi, YUAN Zhiwei, DU Jintao, LI Zhuoshi, WANG Yue. Advances in modified Fischer-Tropsch synthesis catalysts for CO/CO2 hydrogenation to higher alcohols [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3061-3079. |
| [14] | ZHOU Yuntao, WANG Hongxing, LI Xingang, CUI Lifeng. Application and research progress of CeO2 support in CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2723-2738. |
| [15] | ZHOU Qiuming, NIU Congcong, LYU Shuaishuai, LI Hongwei, WEN Fuli, XU Run, LI Mingfeng. Promoting CO2 hydrogenation to methanol through product transformation and separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2776-2785. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |