Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5353-5362.DOI: 10.16085/j.issn.1000-6613.2022-2037
• Materials science and technology • Previous Articles Next Articles
LU Tao1,2(), HU Jiayi1, XU Cheng3, HU Xinlin1, GUO Qingyang1, LI Meng1()
Received:
2022-11-02
Revised:
2023-01-06
Online:
2023-11-11
Published:
2023-10-15
Contact:
LI Meng
路涛1,2(), 胡嘉怡1, 徐成3, 胡鑫琳1, 郭庆阳1, 李朦1()
通讯作者:
李朦
作者简介:
路涛(1987—),男,工程师,研究方向为功能高分子材料。E-mail:lutao0810@163.com。
基金资助:
CLC Number:
LU Tao, HU Jiayi, XU Cheng, HU Xinlin, GUO Qingyang, LI Meng. Facile synthesis of superhydrophobic sponge for efficient separation of oil/water mixture[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5353-5362.
路涛, 胡嘉怡, 徐成, 胡鑫琳, 郭庆阳, 李朦. 超疏水海绵的简易制备及其高效油/水分离性能[J]. 化工进展, 2023, 42(10): 5353-5362.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2037
吸附材料 | 吸附溶剂 | 吸附能力/g·g-1 | 制备方法 | 是否可分离油/水乳液 | 是否可连续油/水分离 | 循环利用次数 |
---|---|---|---|---|---|---|
PDMS/TiO2/PU海绵[ | 柴油 | 14.2 | 原位聚合 | 否 | 否 | 60次 |
氯仿 | 43.6 | |||||
HIPE有机凝胶[ | 汽油 | 21.2 | 化学合成-冷冻干燥 | 否 | 否 | 40次 |
氯仿 | 32.2 | |||||
BN/三聚氰胺海绵[ | 花生油 | 45 | 硅氧烷分步改性 | 否 | 否 | 20次 |
氯仿 | 99 | |||||
碳化三聚氰胺海绵[ | 机油 | 110 | 碱液浸泡-高温炭化 | 否 | 是 | 10次 |
氯仿 | 168 | |||||
石墨烯/三聚氰胺海绵[ | 柴油 | 82 | 超声-微波 | 否 | 否 | 20次 |
氯仿 | 112 | |||||
三聚氰胺海绵[ | 汽油 | 58 | 微波(硝酸)-超声 | 否 | 是 | 10次 |
氯仿 | 116 | |||||
PDMS/SiO2/WS2/三聚氰胺海绵[ | 汽油 | 46 | 浸泡改性 | 否 | 否 | 10次 |
氯仿 | 112 | |||||
SHMP-1三聚氰胺海绵[ | 泵油 | 60 | 浸泡改性 | 是 | 否 | 25次 |
氯仿 | 105 | |||||
PPy/Ag/F三聚氰胺海绵[ | 燃油 | 63 | 气相聚合 | 否 | 是 | 15次 |
二氯甲烷 | 96 | |||||
CNT海绵[ | 汽油 | 115 | 高温-化学气相沉积 | 否 | 否 | — |
氯仿 | 180 | |||||
三聚氰胺海绵 | 汽油 | 86 | 浸泡改性 | 是 | 是 | 30次 |
氯仿 | 170 |
吸附材料 | 吸附溶剂 | 吸附能力/g·g-1 | 制备方法 | 是否可分离油/水乳液 | 是否可连续油/水分离 | 循环利用次数 |
---|---|---|---|---|---|---|
PDMS/TiO2/PU海绵[ | 柴油 | 14.2 | 原位聚合 | 否 | 否 | 60次 |
氯仿 | 43.6 | |||||
HIPE有机凝胶[ | 汽油 | 21.2 | 化学合成-冷冻干燥 | 否 | 否 | 40次 |
氯仿 | 32.2 | |||||
BN/三聚氰胺海绵[ | 花生油 | 45 | 硅氧烷分步改性 | 否 | 否 | 20次 |
氯仿 | 99 | |||||
碳化三聚氰胺海绵[ | 机油 | 110 | 碱液浸泡-高温炭化 | 否 | 是 | 10次 |
氯仿 | 168 | |||||
石墨烯/三聚氰胺海绵[ | 柴油 | 82 | 超声-微波 | 否 | 否 | 20次 |
氯仿 | 112 | |||||
三聚氰胺海绵[ | 汽油 | 58 | 微波(硝酸)-超声 | 否 | 是 | 10次 |
氯仿 | 116 | |||||
PDMS/SiO2/WS2/三聚氰胺海绵[ | 汽油 | 46 | 浸泡改性 | 否 | 否 | 10次 |
氯仿 | 112 | |||||
SHMP-1三聚氰胺海绵[ | 泵油 | 60 | 浸泡改性 | 是 | 否 | 25次 |
氯仿 | 105 | |||||
PPy/Ag/F三聚氰胺海绵[ | 燃油 | 63 | 气相聚合 | 否 | 是 | 15次 |
二氯甲烷 | 96 | |||||
CNT海绵[ | 汽油 | 115 | 高温-化学气相沉积 | 否 | 否 | — |
氯仿 | 180 | |||||
三聚氰胺海绵 | 汽油 | 86 | 浸泡改性 | 是 | 是 | 30次 |
氯仿 | 170 |
1 | MARK Schrope. Oil spill: Deep wounds[J]. Nature, 2011, 472(7342): 152-154. |
2 | GUTERMAN Lila. Exxon valdez turns 20[J]. Science, 2009, 323(5921): 1558-1559. |
3 | 闫红芹, 郑文瑞, 张桂玉, 等. 疏水/亲油丝瓜络制备及在油水分离中的应用[J]. 化工进展, 2021, 40(5): 2893-2899. |
YAN Hongqin, ZHENG Wengrui, ZHANG Guiyu, et al. Preparation of hydrophobic/oleophilic luffa and its application in oil-water separation[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2893-2899. | |
4 | Arne JERNELÖV. How to defend against future oil spills[J]. Nature, 2010, 466(7303): 182-183. |
5 | WANG Ben, LIANG Weixin, GUO Zhiguang, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361. |
6 | LI Lingxiao, HU Tao, LI An, et al. Electrically conductive carbon aerogels with high salt-resistance for efficient solar-driven interfacial evaporation[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 32143-32153. |
7 | STOLZ Aude, LE FLOCH Sylvie, REINERT Laurence, et al. Melamine-derived carbon sponges for oil-water separation[J]. Carbon, 2016, 107: 198-208. |
8 | LI Lingxiao, HU Tao, YANG Yanfei, et al. Strong, compressible, bendable and stretchable silicone sponges by solvent-controlled hydrolysis and polycondensation of silanes[J]. Journal of Colloid and Interface Science, 2019, 540: 554-562. |
9 | JI Cuihong, ZHANG Ke, LI Le, et al. High performance graphene-based foam fabricated by a facile approach for oil absorption[J]. Journal of Materials Chemistry A, 2017, 5(22): 11263-11270. |
10 | HUANG Shouying, ZHANG Yan, SHI Jiafu, et al. Superhydrophobic particles derived from nature-inspired polyphenol chemistry for liquid marble formation and oil spills treatment[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 676-681. |
11 | LEI Zhiwen, ZHANG Guangzhao, DENG Yonghong, et al. Surface modification of melamine sponges for pH-responsive oil absorption and desorption[J]. Applied Surface Science, 2017, 416: 798-804. |
12 | LI Yong, ZHANG Zhaozhu, WANG Mengke, et al. One-pot fabrication of nanoporous polymer decorated materials: From oil-collecting devices to high-efficiency emulsion separation[J]. Journal of Materials Chemistry A, 2017, 5(10): 5077-5087. |
13 | SUN Hanxue, LI An, ZHU Zhaoqi, et al. Superhydrophobic activated carbon-coated sponges for separation and absorption[J]. ChemSusChem, 2013, 6(6): 1057-1062. |
14 | PAN Yanxiong, SHI Kai, PENG Chao, et al. Evaluation of hydrophobic polyvinyl-alcohol formaldehyde sponges as absorbents for oil spill[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8651-8659. |
15 | WANG Gang, ZENG Zhixiang, WU Xuedong, et al. Three-dimensional structured sponge with high oil wettability for the clean-up of oil contaminations and separation of oil-water mixtures[J]. Polymer Chemistry, 2014, 5(20): 5942-5948. |
16 | 陈成. 石墨烯基宏观材料构筑及其对水中污染物的吸附分离作用研究[D]. 杭州:浙江大学, 2021. |
CHEN Cheng. Adsorption and separation properties of graphene-based macrostructures for water treatment and interaction mechanisms[D]. Hangzhou: Zhejiang University, 2021. | |
17 | LI Meng, BIAN Cheng, YANG Guoxin, et al. Facile fabrication of water-based and non-fluorinated superhydrophobic sponge for efficient separation of immiscible oil/water mixture and water-in-oil emulsion[J]. Chemical Engineering Journal, 2019, 368: 350-358. |
18 | LIU Jingjing, LI Meng, LUO Chunyan, et al. Eco-friendly synthesis of self-reporting robust superhydrophobic coatings with damage sensitive photoluminescence[J]. Chemical Engineering Journal, 2022, 431: 134162. |
19 | RAJEEV R S, DE S K, BHOWMICK A K, et al. Atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and thermal studies of the new melamine fiber[J]. Journal of Adhesion Science and Technology, 2002, 16(14): 1957-1978. |
20 | LI Meng, LI Yu, XUE Fang, et al. Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings[J]. Applied Surface Science, 2018, 447: 489-499. |
21 | DERYŁO-MARCZEWSKA A, GOWOREK J, PIKUS S, et al. Characterization of melamine-formaldehyde resins by XPS, SAXS, and sorption techniques[J]. Langmuir, 2002, 18(20): 7538-7543. |
22 | YANG Yu, DENG Yonghong, TONG Zhen, et al. Multifunctional foams derived from poly(melamine formaldehyde) as recyclable oil absorbents[J]. Journal of Materials Chemistry A, 2014, 2(26): 9994-9999. |
23 | QIN Yuyang, PENG Qingyu, DING Yujie, et al. Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application[J]. ACS Nano, 2015, 9(9): 8933-8941. |
24 | RUAN Changping, AI Kelong, LI Xingbo, et al. A superhydrophobic sponge with excellent absorbency and flame retardancy[J]. Angewandte Chemie International Edition, 2014, 53(22): 5556-5560. |
25 | LIU Yue, MA Junkui, WU Tao, et al. Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10018-10026. |
26 | DENIZ Ceylan, SAADET Dogu, BURAK Karacik, et al. Evaluation of butyl rubber as sorbent material for the removal of oil and polycyclic aromatic hydrocarbons from seawater[J]. Environmental Science & Technology, 2009, 43(10): 3846-3852. |
27 | Choi SUNG-JIN, Kwon TAE-HONG, HWON Im, et al. A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water[J]. ACS Applied Materials & Interfaces, 2011, 3(12): 4552-4556. |
28 | MARYAM Khosravi, SAEID Azizian. Synthesis of a novel highly oleophilic and highly hydrophobic sponge for rapid oil spill cleanup[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25326-25333. |
29 | QIU Shi, JIANG Bo, ZHENG Xing, et al. Hydrophobic and fire-resistant carbon monolith from melamine sponge: A recyclable sorbent for oil-water separation[J]. Carbon, 2015, 84: 551-559. |
30 | SHUAI Qian, YANG Xiaotian, LUO Yanmei, et al. A superhydrophobic poly(dimethylsiloxane)-TiO2 coated polyurethane sponge for selective absorption of oil from water[J]. Materials Chemistry and Physics, 2015, 162: 94-99. |
31 | WU Yuanpeng, ZHANG Tao, XU Zhiguang, et al. High internal phase emulsion (HIPE) xerogels for enhanced oil spill recovery[J]. Journal of Materials Chemistry A, 2015, 3(5): 1906-1909. |
32 | HAN Shuangqiao, SONG Qiangqiang, FENG Xiaoquan, et al. Flame-retardant silanized boron nitride nanosheet-infused superhydrophobic sponges for oil/water separation[J]. ACS Applied Nano Materials, 2021, 4(11): 11809-11819. |
33 | KONG Yan, ZHANG Shumei, GAO Yue, et al. Low-temperature carbonization synthesis of carbon-based super-hydrophobic foam for efficient multi-state oil/water separation[J]. Journal of Hazardous Materials, 2022, 423(Pt B): 127064. |
34 | SONG Shuang, YANG Hao, SU Chunping, et al. Ultrasonic-microwave assisted synthesis of stable reduced graphene oxide modified melamine foam with superhydrophobicity and high oil adsorption capacities[J]. Chemical Engineering Journal, 2016, 306: 504-511. |
35 | LIU Xuehui, TIAN Fei, ZHAO Xu, et al. Recycling waste epoxy resin as hydrophobic coating of melamine foam for high-efficiency oil absorption[J]. Applied Surface Science, 2020, 529: 147151. |
36 | ZHAI Guanzhong, QI Lixue, HE Wang, et al. Durable super-hydrophobic PDMS@SiO2@WS2 sponge for efficient oil/water separation in complex marine environment[J]. Environmental Pollution, 2021, 269: 116118. |
37 | GONG Li, ZHU Hongxia, WU Wenhao, et al. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions[J]. Journal of Hazardous Materials, 2022, 425: 127980. |
38 | CHEN Jiucun, YOU Hui, XU Liqun, et al. Facile synthesis of a two-tier hierarchical structured superhydrophobic-superoleophilic melamine sponge for rapid and efficient oil/water separation[J]. Journal of Colloid and Interface Science, 2017, 506: 659-668. |
39 | GUI Xuchun, WEI Jinquan, WANG Kunlin, et al. Carbon nanotube sponges[J]. Advanced Materials, 2010, 22(5): 617-621. |
[1] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[2] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[3] | LIU Zhanjian, FU Yuxin, REN Lina, ZHANG Xiguang, YUAN Zhongtao, YANG Nan, WANG Huaiyuan. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. |
[4] | ZHAN Xun, CHEN Jian, YANG Zhaozhe, WU Guomin, KONG Zhenwu, SHEN Kuizhong. Progress on superhydrophobic materials from nanocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4303-4313. |
[5] | ZHU Xuedan, YAO Yali, MA Lili, WANG Jiaxin, YANG Jie, PENG Lei, HE Jinmei, QU Mengnan. Progress in preparation and application of superhydrophobic materials based on polyvinyl chloride [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3676-3688. |
[6] | LI Zheng, NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng. Preparation of PVDF-PFTS/SiO2 membrane and its resistance mixed fouling performance [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2713-2721. |
[7] | LIANG Ge, HUANG Xiangfeng, LIU Wanqi, XIONG Yongjiao, PENG Kaiming. A review of superhydrophobic three-dimensional porous materials for oil/water separation of emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6557-6572. |
[8] | YUAN Yuting, FENG Yongchao, YI Honghong, TANG Xiaolong, YU Qingjun, ZHANG Yuanyuan, WEI Jinghui, MENG Xianzheng. Research progress of superhydrophobic surface materials and its application in air pollution control [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345. |
[9] | XIN Yue, SONG Shuang, ZHANG Zhilei, ZHANG Qingxia, LYU Zhong, YANG Hao. Preparation of scale-like BiVO4 coated mesh and its application in oil-water separation [J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3536-3542. |
[10] | ZHENG Longzhu, SU Xiaojing, LI Hongqiang, GUAN Hang, GUZINUER Ababaikeli, FENG Haiyang, WEI Ye, LAI Xuejun, ZENG Xingrong. Progress in construction and application of functional superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645. |
[11] | LEI Yu, TIAN Mengmeng, ZHANG Xinya, JIANG Xiang. Research progress on the self-healing property and applications of superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633. |
[12] | Weibai BIAN, Jianming PAN. Research progress in selective adsorption materialsfor lithium extraction [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2206-2217. |
[13] | Xiaohua LI,Zichun YANG,Kunfeng LI,Shuang ZHAO,Zhifang FEI,Zhen ZHANG. Preparation and characterization of transparent and compressible methylsilsesquioxane aerogels using MTES as precursor [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1115-1121. |
[14] | Rui HOU,Guiqun LI,Yan ZHANG,Wenhao DING,Baoqin ZHANG,Mingjun LI. Application of polymer phase separation technique in preparation of superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(2): 616-626. |
[15] | Yan BAO, Jingxiang CHANG. Research progress of durable superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5148-5160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |