Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (5): 2713-2721.DOI: 10.16085/j.issn.1000-6613.2021-1238
• Resources and environmental engineering • Previous Articles Next Articles
LI Zheng(), NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng
Received:
2021-06-11
Revised:
2021-08-11
Online:
2022-05-24
Published:
2022-05-05
Contact:
LI Zheng
通讯作者:
李正
作者简介:
李正(1979—),男,博士,副教授,硕士生导师,研究方向为环境功能材料。E-mail:基金资助:
CLC Number:
LI Zheng, NIU Jingdong, HE Guangze, ZHANG Lanhe, ZHANG Haifeng. Preparation of PVDF-PFTS/SiO2 membrane and its resistance mixed fouling performance[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2713-2721.
李正, 牛静东, 何广泽, 张兰河, 张海丰. PVDF-PFTS/SiO2膜制备及抗混合污染性能[J]. 化工进展, 2022, 41(5): 2713-2721.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1238
样品 | 元素含量/% | ||||||
---|---|---|---|---|---|---|---|
C | N | F | O | Si | F/C | ||
PVDF基膜 | 53.81 | 1.60 | 42.20 | 2.39 | — | 0.78 | |
PVDF-PFTS/SiO2 | 32.99 | 1.46 | 38.77 | 17.76 | 9.02 | 1.18 |
样品 | 元素含量/% | ||||||
---|---|---|---|---|---|---|---|
C | N | F | O | Si | F/C | ||
PVDF基膜 | 53.81 | 1.60 | 42.20 | 2.39 | — | 0.78 | |
PVDF-PFTS/SiO2 | 32.99 | 1.46 | 38.77 | 17.76 | 9.02 | 1.18 |
样品 | 膜厚/μm | 最大孔径/nm | 平均孔径/nm | 水接触角/(°) | 进水压力/kPa |
---|---|---|---|---|---|
PVDF基膜 | 100±1 | 652 | 543 | 99±1 | 204 |
PVDF-PFTS/SiO2膜 | 101±1 | 664 | 561 | 153±2 | 235 |
样品 | 膜厚/μm | 最大孔径/nm | 平均孔径/nm | 水接触角/(°) | 进水压力/kPa |
---|---|---|---|---|---|
PVDF基膜 | 100±1 | 652 | 543 | 99±1 | 204 |
PVDF-PFTS/SiO2膜 | 101±1 | 664 | 561 | 153±2 | 235 |
液体 | 总表面张力γ/mN·m-1 | 非极性表面张力γLW/mN·m-1 | 电子供体表面张力γ-/mN·m-1 | 电子受体表面张力γ+/mN·m-1 |
---|---|---|---|---|
水 | 72.80 | 21.80 | 25.50 | 25.50 |
二碘甲烷 | 50.80 | 50.80 | 0.00 | 0.00 |
乙二醇 | 48.00 | 29.00 | 47.00 | 1.90 |
液体 | 总表面张力γ/mN·m-1 | 非极性表面张力γLW/mN·m-1 | 电子供体表面张力γ-/mN·m-1 | 电子受体表面张力γ+/mN·m-1 |
---|---|---|---|---|
水 | 72.80 | 21.80 | 25.50 | 25.50 |
二碘甲烷 | 50.80 | 50.80 | 0.00 | 0.00 |
乙二醇 | 48.00 | 29.00 | 47.00 | 1.90 |
样品 | 接触角/(°) | 非极性 表面张力γLW /mN·m-1 | 电子供体 表面张力γ-/mN·m-1 | 电子受体 表面张力γ+/mN·m-1 | 极性 表面张力γAB/mN·m-1 | 总表面张力γTOT/mN·m-1 | zeta电位 /mV | ||
---|---|---|---|---|---|---|---|---|---|
θw | θD | θE | |||||||
PVDF基膜 | 98 | 65 | 71 | 22.401 | 3 | 0.102 | 1.106 | 23.507 | -36.787 |
PVDF-PFTS/SiO2膜 | 152 | 140 | 136 | 7.058 | 6.646 | 0.003 | 0.282 | 7.340 | -40.130 |
BSA+CaCl2 | 25 | 44 | 30 | 37.540 | 63.282 | 0.017 | 2.074 | 39.614 | -11.581 |
样品 | 接触角/(°) | 非极性 表面张力γLW /mN·m-1 | 电子供体 表面张力γ-/mN·m-1 | 电子受体 表面张力γ+/mN·m-1 | 极性 表面张力γAB/mN·m-1 | 总表面张力γTOT/mN·m-1 | zeta电位 /mV | ||
---|---|---|---|---|---|---|---|---|---|
θw | θD | θE | |||||||
PVDF基膜 | 98 | 65 | 71 | 22.401 | 3 | 0.102 | 1.106 | 23.507 | -36.787 |
PVDF-PFTS/SiO2膜 | 152 | 140 | 136 | 7.058 | 6.646 | 0.003 | 0.282 | 7.340 | -40.130 |
BSA+CaCl2 | 25 | 44 | 30 | 37.540 | 63.282 | 0.017 | 2.074 | 39.614 | -11.581 |
膜材料 | 极性作用能ΔG | 范德华作用能ΔG | 静电作用能ΔG | 总作用能ΔG |
---|---|---|---|---|
PVDF基膜 | -5.156 | -0.186 | 2.59×10-6 | -5.342 |
PVDF-PFTS/SiO2膜 | 4.704 | 5.868 | 3.55×10-6 | 10.572 |
膜材料 | 极性作用能ΔG | 范德华作用能ΔG | 静电作用能ΔG | 总作用能ΔG |
---|---|---|---|---|
PVDF基膜 | -5.156 | -0.186 | 2.59×10-6 | -5.342 |
PVDF-PFTS/SiO2膜 | 4.704 | 5.868 | 3.55×10-6 | 10.572 |
1 | KHAYET M. Membranes and theoretical modeling of membrane distillation: a review[J]. Advances in Colloid and Interface Science, 2011, 164(1/2): 56-88. |
2 | TIJING L D, WOO Y C, CHOI J S, et al. Fouling and its control in membrane distillation: a review[J]. Journal of Membrane Science, 2015, 475: 215-244. |
3 | XU W T, ZHAO Z P, LIU M, et al. Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol-water mixture[J]. Journal of Membrane Science, 2015, 491: 110-120. |
4 | 王凯, 王德武, 侯得印, 等. 自组装法制备PVDF-SiO2/PVSQ超疏水复合膜及膜蒸馏抗污染性能[J]. 化工学报, 2019, 70(1): 298-308. |
WANG K, WANG D W, HOU D Y, et al. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation[J]. CIESC Journal, 2019, 70(1): 298-308. | |
5 | REZAEI S, MANOUCHERI I, MORADIAN R, et al. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication[J]. Chemical Engineering Journal, 2014, 252: 11-16. |
6 | SONG X Y, ZHAI J, WANG Y L, et al. Self-assembly of amino-functionalized monolayers on silicon surfaces and preparation of superhydrophobic surfaces based on alkanoic acid dual layers and surface roughening[J]. Journal of Colloid and Interface Science, 2006, 298(1): 267-273. |
7 | KOH E, LEE Y T. Preparation of an omniphobic nanofiber membrane by the self-assembly of hydrophobic nanoparticles for membrane distillation[J]. Separation and Purification Technology, 2021, 259: 118134. |
8 | NGHIEM L D, CATH T. A scaling mitigation approach during direct contact membrane distillation[J]. Separation and Purification Technology, 2011, 80(2): 315-322. |
9 | WARSINGER D M, SWAMINATHAN J, GUILLEN-BURRIEZA E, et al. Scaling and fouling in membrane distillation for desalination applications: a review[J]. Desalination, 2015, 356: 294-313. |
10 | SHIRAZI S, LIN C J, CHEN D. Inorganic fouling of pressure-driven membrane processes: a critical review[J]. Desalination, 2010, 250(1): 236-248. |
11 | HOU D Y, ZHANG L J, ZHAO C W, et al. Ultrasonic irradiation control of silica fouling during membrane distillation process[J]. Desalination, 2016, 386: 48-57. |
12 | GRYTA M. Long-term performance of membrane distillation process[J]. Journal of Membrane Science, 2005, 265(1/2): 153-159. |
13 | HE F, SIRKAR K K, GILRON J. Studies on scaling of membranes in desalination by direct contact membrane distillation: CaCO3 and mixed CaCO3/CaSO4 systems[J]. Chemical Engineering Science, 2009, 64(8): 1844-1859. |
14 | GRYTA M, TOMASZEWSKA M, GRZECHULSKA J, et al. Membrane distillation of NaCl solution containing natural organic matter[J]. Journal of Membrane Science, 2001, 181(2): 279-287. |
15 | 谢松辰, 文剑平, 庞志广, 等. 膜蒸馏脱盐中膜污染与膜润湿的研究进展[J]. 化工进展, 2021, 40(7): 3942-3956. |
XIE S C, WEN J P, PANG Z G, et al. Research progress of membrane fouling and wetting in membrane distillation process for desalination[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3942-3956. | |
16 | ZHANG J, SONG Z Y, LI B A, et al. Fabrication and characterization of superhydrophobic poly(vinylidene fluoride) membrane for direct contact membrane distillation[J]. Desalination, 2013, 324: 1-9. |
17 | HOU D Y, CHRISTIE K S S, WANG K, et al. Biomimetic superhydrophobic membrane for membrane distillation with robust wetting and fouling resistance[J]. Journal of Membrane Science, 2020, 599: 117708. |
18 | KHAN A A, KHAN I A, SIYAL M I, et al. Optimization of membrane modification using SiO2 for robust anti-fouling performance with calcium-humic acid feed in membrane distillation[J]. Environmental Research, 2019, 170: 374-382. |
19 | SONG H, SHI Y F, FU C. Oil adsorption measurements during membrane filtration[J]. Journal of Membrane Science, 2003, 214(1): 93-99. |
20 | SUN X H, KANANI D M, GHOSH R. Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration[J]. Journal of Membrane Science, 2008, 320(1/2): 372-380. |
21 | DENG B, YU M, YANG X X, et al. Antifouling microfiltration membranes prepared from acrylic acid or methacrylic acid grafted poly(vinylidene fluoride) powder synthesized via pre-irradiation induced graft polymerization[J]. Journal of Membrane Science, 2010, 350(1/2): 252-258. |
22 | FRANKEN A C M, NOLTEN J A M, MULDER M H V, et al. Wetting criteria for the applicability of membrane distillation[J]. Journal of Membrane Science, 1987, 33(3): 315-328. |
23 | MO H J, TAY K G, NG H Y. Fouling of reverse osmosis membrane by protein (BSA): effects of pH, calcium, magnesium, ionic strength and temperature[J]. Journal of Membrane Science, 2008, 315(1/2): 28-35. |
24 | HAMZAH N, LEO C P. Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles[J]. Separation and Purification Technology, 2016, 167: 79-87. |
25 | NAMVAR-MAHBOUB M, PAKIZEH M. Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration[J]. Separation and Purification Technology, 2013, 119: 35-45. |
26 | ZHAO Y Y, LI F Y, CARVAJAL M T, et al. Interactions between bovine serum albumin and alginate: an evaluation of alginate as protein carrier[J]. Journal of Colloid and Interface Science, 2009, 332(2): 345-353. |
27 | LIU C, CHEN L, ZHU L. Fouling mechanism of hydrophobic polytetrafluoroethylene (PTFE) membrane by differently charged organics during direct contact membrane distillation (DCMD) process: an especial interest in the feed properties[J]. Journal of Membrane Science, 2018, 548: 125-135. |
28 | WANG Q Y, GUO Y F, WANG Z W, et al. Effects of graphene derivatives on polyvinylidene fluoride membrane modification evaluated with XDLVO theory and quartz crystal microbalance with dissipation[J]. Water Environment Research, 2021, 93(3): 360-369. |
29 | BRANT J A, CHILDRESS A E. Assessing short-range membrane-colloid interactions using surface energetics[J]. Journal of Membrane Science, 2002, 203(1/2): 257-273. |
30 | 寇朝卫, 张干伟, 沈舒苏, 等. 基于XDLVO理论分析物理化学相互作用对纳滤膜有机污染影响[J]. 水处理技术, 2017, 43(8): 32-39. |
KOU C W, ZHANG G W, SHEN S S, et al. Effect of physical and chemical interaction on organic fouling of nanofiltration membrane based on XDLVO theory analysis[J]. Technology of Water Treatment, 2017, 43(8): 32-39. | |
31 | 刘永明, 施建宇, 鹿芹芹, 等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报, 2013, 27(11): 123-129. |
LIU Y M, SHI J Y, LU Q Q, et al. Research progress on calculation of solid surface tension based on Young’s equation[J]. Materials Review, 2013, 27(11): 123-129. | |
32 | MENG X R, TANG W T, WANG L, et al. Mechanism analysis of membrane fouling behavior by humic acid using atomic force microscopy: effect of solution pH and hydrophilicity of PVDF ultrafiltration membrane interface[J]. Journal of Membrane Science, 2015, 487: 180-188. |
33 | SUBRAMANI A, HOEK E M V. Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 2008, 319(1/2): 111-125. |
34 | BOUCHARD C R, JOLICOEUR J, KOUADIO P, et al. Study of humic acid adsorption on nanofiltration membranes by contact angle measurements[J]. The Canadian Journal of Chemical Engineering, 1997, 75(2): 339-345. |
35 | WANG X D, ZHOU M, MENG X R, et al. Effect of protein on PVDF ultrafiltration membrane fouling behavior under different pH conditions: interface adhesion force and XDLVO theory analysis[J]. Frontiers of Environmental Science and Engineering, 2016, 10(4): 1-11. |
36 | WANG H, NEWBY B M Z. Applicability of the extended Derjaguin–Landau–Verwey–Overbeek theory on the adsorption of bovine serum albumin on solid surfaces[J]. Biointerphases, 2014, 9(4): 041006. |
37 | ZUO G Z, WANG R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application[J]. Journal of Membrane Science, 2013, 447: 26-35. |
38 | ZHAO Y Q, YU W M, LI R J, et al. Electric field endowing the conductive polyvinylidene fluoride (PVDF)-graphene oxide (GO)-nickel (Ni) membrane with high-efficient performance for dye wastewater treatment[J]. Applied Surface Science, 2019, 483: 1006-1016. |
[1] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[2] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[3] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[4] | ZHANG Jianzhong, XU Sheng, FAN Jiashu, FEI Zhenyu, WANG Kun, HUANG Jian, CUI Fengbo, RAN Wenhua. Progress in characterization and analysis of glass fiber sizing [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 821-838. |
[5] | YE Hao, HU Ping, WANG Ce, LIU Yong. Advances in research on magnetic fibrous electromagnetic wave absorbers [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5310-5321. |
[6] | YANG Zhuangzhuang, LIU Yongjun, LIU Xingshe, LIU Zhe, YANG Lu, ZHANG Aining. Coalescence separation of oily sludge and removal effect of organic substances from coal chemical wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 538-545. |
[7] | YANG Junling, LI Ao, CHEN Yue, ZHU Guangcan, LI Shuping, LU Yongze. Infrared spectroscopy-multivariate curve resolution analysis of aluminum-based coagulants to mitigate membrane fouling [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5132-5141. |
[8] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[9] | GUO Zhi’an, SUI Zhihui, LI Yaping, XU Yikun, SUN Fang, ZHAO Xin. Research progress on preparation technology of phase-change bidirectional temperature-regulating textile materials [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3648-3659. |
[10] | ZHENG Jinbao, LI Chen. Research progress in improving hydrophobicity of starch-based packaging materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3089-3102. |
[11] | QIAN Guanglei, XIE Chenxin, TENG Houkai, ZHAO Hui, REN Chunyan. Influence of aeration on hydrodynamic characteristic and membrane fouling in a low cross-flow velocity microfiltration [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2277-2284. |
[12] | FU Hanxun, LAN Yuhao, LING Ziye, ZHANG Zhengguo. Review on development of magnesium sulfate heptahydrate for thermochemical storage and application [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1956-1969. |
[13] | HU Zhuohuan, YUAN Chengwei, XU Jiayin, LUO Ting, ZHOU Zhijie. Effect of metal 3D-printed composite capillary wick on loop heat pipe characteristics [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1715-1724. |
[14] | HUANG Kainan, JI Xuezhi, WANG Fei, GAO Chengyun, LU Jingqiong. Overview of ultrafiltration membrane technology [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 219-225. |
[15] | XIA Zhenguo, ZHU Yingying, CHEN Geng, LU Yu, WANG Jiafeng. Progress in preparation and modification of TiO2/AC composite photocatalysts for environmental purification [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3837-3846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |