Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (10): 5363-5372.DOI: 10.16085/j.issn.1000-6613.2022-2124
• Materials science and technology • Previous Articles Next Articles
ZHANG Jie1,2,3(), WANG Xudong1,2,3(), YANG Yifei1,2,3, REN Yue1,2,3, CHEN Licheng1,2,3
Received:
2022-11-16
Revised:
2023-02-08
Online:
2023-11-11
Published:
2023-10-15
Contact:
WANG Xudong
仉洁1,2,3(), 王旭东1,2,3(), 杨逸飞1,2,3, 任玥1,2,3, 陈立成1,2,3
通讯作者:
王旭东
作者简介:
仉洁(1998-),女,硕士研究生,研究方向为膜分离理论与技术。E-mail:zhangjieya@xauat.edu.cn。
基金资助:
CLC Number:
ZHANG Jie, WANG Xudong, YANG Yifei, REN Yue, CHEN Licheng. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372.
仉洁, 王旭东, 杨逸飞, 任玥, 陈立成. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-2124
因素 | 比例 | NIPAM/g | MBAA/g | SA/g | MMT/g |
---|---|---|---|---|---|
n(NIPAM)∶n(MBAA) | 100∶2 | 0.7 | 0.0191 | 0.0123 | 0.007 |
100∶3 | 0.7 | 0.0286 | 0.0123 | 0.007 | |
100∶4 | 0.7 | 0.0382 | 0.0123 | 0.007 | |
n(NIPAM)∶n(SA) | 100∶1 | 0.7 | 0.0286 | 0.0061 | 0.007 |
100∶2 | 0.7 | 0.0286 | 0.0123 | 0.007 | |
100∶3 | 0.7 | 0.0286 | 0.0184 | 0.007 | |
100∶4 | 0.7 | 0.0286 | 0.0245 | 0.007 | |
m(NIPAM)∶m(MMT) | 100∶1 | 0.7 | 0.0286 | 0.0123 | 0.007 |
100∶2 | 0.7 | 0.0286 | 0.0123 | 0.014 | |
100∶3 | 0.7 | 0.0286 | 0.0123 | 0.021 | |
100∶4 | 0.7 | 0.0286 | 0.0123 | 0.028 |
因素 | 比例 | NIPAM/g | MBAA/g | SA/g | MMT/g |
---|---|---|---|---|---|
n(NIPAM)∶n(MBAA) | 100∶2 | 0.7 | 0.0191 | 0.0123 | 0.007 |
100∶3 | 0.7 | 0.0286 | 0.0123 | 0.007 | |
100∶4 | 0.7 | 0.0382 | 0.0123 | 0.007 | |
n(NIPAM)∶n(SA) | 100∶1 | 0.7 | 0.0286 | 0.0061 | 0.007 |
100∶2 | 0.7 | 0.0286 | 0.0123 | 0.007 | |
100∶3 | 0.7 | 0.0286 | 0.0184 | 0.007 | |
100∶4 | 0.7 | 0.0286 | 0.0245 | 0.007 | |
m(NIPAM)∶m(MMT) | 100∶1 | 0.7 | 0.0286 | 0.0123 | 0.007 |
100∶2 | 0.7 | 0.0286 | 0.0123 | 0.014 | |
100∶3 | 0.7 | 0.0286 | 0.0123 | 0.021 | |
100∶4 | 0.7 | 0.0286 | 0.0123 | 0.028 |
自变量X | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
SA与NIPAM的摩尔比(X1)/% | 1 | 2 | 3 |
MMT与NIPAM的质量比(X2)/% | 1 | 2 | 3 |
MBAA与NIPAM的摩尔比(X3)/% | 2 | 3 | 4 |
自变量X | 水平 | ||
---|---|---|---|
-1 | 0 | 1 | |
SA与NIPAM的摩尔比(X1)/% | 1 | 2 | 3 |
MMT与NIPAM的质量比(X2)/% | 1 | 2 | 3 |
MBAA与NIPAM的摩尔比(X3)/% | 2 | 3 | 4 |
编号 | 自变量 | SR/g·g-1 | |||||
---|---|---|---|---|---|---|---|
编码 | X1 | 编码 | X2 | 编码 | X3 | Y | |
1 | -1 | 1 | -1 | 1 | 0 | 3 | 36.66 |
2 | 1 | 3 | -1 | 1 | 0 | 3 | 79.34 |
3 | -1 | 1 | 1 | 3 | 0 | 3 | 36.63 |
4 | 1 | 3 | 1 | 3 | 0 | 3 | 74.43 |
5 | -1 | 1 | 0 | 2 | -1 | 2 | 25.04 |
6 | 1 | 3 | 0 | 2 | -1 | 2 | 30.98 |
7 | -1 | 1 | 0 | 2 | 1 | 4 | 21.56 |
8 | 1 | 3 | 0 | 2 | 1 | 4 | 51.23 |
9 | 0 | 2 | -1 | 1 | -1 | 2 | 58.05 |
10 | 0 | 2 | 1 | 3 | -1 | 2 | 56.35 |
11 | 0 | 2 | -1 | 1 | 1 | 4 | 56.54 |
12 | 0 | 2 | 1 | 3 | 1 | 4 | 52.34 |
13 | 0 | 2 | 0 | 2 | 0 | 3 | 67.80 |
14 | 0 | 2 | 0 | 2 | 0 | 3 | 78.77 |
15 | 0 | 2 | 0 | 2 | 0 | 3 | 71.97 |
16 | 0 | 2 | 0 | 2 | 0 | 3 | 96.86 |
17 | 0 | 2 | 0 | 2 | 0 | 3 | 94.58 |
编号 | 自变量 | SR/g·g-1 | |||||
---|---|---|---|---|---|---|---|
编码 | X1 | 编码 | X2 | 编码 | X3 | Y | |
1 | -1 | 1 | -1 | 1 | 0 | 3 | 36.66 |
2 | 1 | 3 | -1 | 1 | 0 | 3 | 79.34 |
3 | -1 | 1 | 1 | 3 | 0 | 3 | 36.63 |
4 | 1 | 3 | 1 | 3 | 0 | 3 | 74.43 |
5 | -1 | 1 | 0 | 2 | -1 | 2 | 25.04 |
6 | 1 | 3 | 0 | 2 | -1 | 2 | 30.98 |
7 | -1 | 1 | 0 | 2 | 1 | 4 | 21.56 |
8 | 1 | 3 | 0 | 2 | 1 | 4 | 51.23 |
9 | 0 | 2 | -1 | 1 | -1 | 2 | 58.05 |
10 | 0 | 2 | 1 | 3 | -1 | 2 | 56.35 |
11 | 0 | 2 | -1 | 1 | 1 | 4 | 56.54 |
12 | 0 | 2 | 1 | 3 | 1 | 4 | 52.34 |
13 | 0 | 2 | 0 | 2 | 0 | 3 | 67.80 |
14 | 0 | 2 | 0 | 2 | 0 | 3 | 78.77 |
15 | 0 | 2 | 0 | 2 | 0 | 3 | 71.97 |
16 | 0 | 2 | 0 | 2 | 0 | 3 | 96.86 |
17 | 0 | 2 | 0 | 2 | 0 | 3 | 94.58 |
来源 | 平方和 | 自由度 | 均方 | F值 | p值 | |
---|---|---|---|---|---|---|
模型 | 7429.03 | 9 | 825.45 | 5.75 | 0.0155 | 显著 |
X1-SA | 1684.61 | 1 | 1684.61 | 11.73 | 0.0111 | |
X2-MMT | 14.69 | 1 | 14.69 | 0.1022 | 0.7585 | |
X3-MBAA | 15.82 | 1 | 15.82 | 0.1101 | 0.7497 | |
X1X2 | 5.95 | 1 | 5.95 | 0.0414 | 0.8445 | |
X1X3 | 140.78 | 1 | 140.78 | 0.9799 | 0.3552 | |
X2X3 | 1.56 | 1 | 1.56 | 0.0109 | 0.9199 | |
X12 | 2511.76 | 1 | 2511.76 | 17.48 | 0.0041 | |
X22 | 2.74 | 1 | 2.74 | 0.0191 | 0.894 | |
X32 | 2709.89 | 1 | 2709.89 | 18.86 | 0.0034 | |
残差 | 1005.64 | 7 | 143.66 | |||
失拟 | 313.89 | 3 | 104.63 | 0.605 | 0.6457 | 不显著 |
纯误差 | 691.75 | 4 | 172.94 | |||
总和 | 8434.67 | 16 |
来源 | 平方和 | 自由度 | 均方 | F值 | p值 | |
---|---|---|---|---|---|---|
模型 | 7429.03 | 9 | 825.45 | 5.75 | 0.0155 | 显著 |
X1-SA | 1684.61 | 1 | 1684.61 | 11.73 | 0.0111 | |
X2-MMT | 14.69 | 1 | 14.69 | 0.1022 | 0.7585 | |
X3-MBAA | 15.82 | 1 | 15.82 | 0.1101 | 0.7497 | |
X1X2 | 5.95 | 1 | 5.95 | 0.0414 | 0.8445 | |
X1X3 | 140.78 | 1 | 140.78 | 0.9799 | 0.3552 | |
X2X3 | 1.56 | 1 | 1.56 | 0.0109 | 0.9199 | |
X12 | 2511.76 | 1 | 2511.76 | 17.48 | 0.0041 | |
X22 | 2.74 | 1 | 2.74 | 0.0191 | 0.894 | |
X32 | 2709.89 | 1 | 2709.89 | 18.86 | 0.0034 | |
残差 | 1005.64 | 7 | 143.66 | |||
失拟 | 313.89 | 3 | 104.63 | 0.605 | 0.6457 | 不显著 |
纯误差 | 691.75 | 4 | 172.94 | |||
总和 | 8434.67 | 16 |
1 | LIU Su, TONG Xin, LIU Sihua, et al. Multi-functional tannic acid (TA)-Ferric complex coating for forward osmosis membrane with enhanced micropollutant removal and antifouling property[J]. Journal of Membrane Science, 2021, 626: 119171. |
2 | SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis: Where are we now?[J]. Desalination, 2015, 356: 271-284. |
3 | GONZALES R R, ZHANG Lei, SASAKI Y, et al. Facile development of comprehensively fouling-resistant reduced polyketone-based thin film composite forward osmosis membrane for treatment of oily wastewater[J]. Journal of Membrane Science, 2021, 626: 119185. |
4 | GIAGNORIO M, CASASSO A, TIRAFERRI A. Environmental sustainability of forward osmosis: The role of draw solute and its management[J]. Environment International, 2021, 152: 106498. |
5 | LI Dan, ZHANG Xinyi, YAO Jianfeng, et al. Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination[J]. Chemical Communications, 2011, 47(6): 1710-1712. |
6 | RAZMJOU A, SIMON G P, WANG Huanting. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent[J]. Chemical Engineering Journal, 2013, 215/216: 913-920. |
7 | MATSUMOTO K, SAKIKAWA N, MIYATA T. Thermo-responsive gels that absorb moisture and ooze water[J]. Nature Communications, 2018, 9: 2315. |
8 | CAI Yufeng, SHEN Wenming, Siew Leng LOO, et al. Towards temperature driven forward osmosis desalination using semi-IPN hydrogels as reversible draw agents[J]. Water Research, 2013, 47(11): 3773-3781. |
9 | 吴科霖, 骆华勇, 方茜, 等. 电场敏感水凝胶的制备及其正渗透脱盐性能研究[J]. 膜科学与技术, 2020, 40(6): 58-64. |
WU Kelin, LUO Huayong, FANG Qian, et al. Preparation of electric-sensitive hydrogels and their performance in forward osmosis desalination[J]. Membrane Science and Technology, 2020, 40(6): 58-64. | |
10 | LUO Huayong, WU Kelin, WANG Qin, et al. Forward osmosis with electro-responsive P(AMPS-co-AM) hydrogels as draw agents for desalination[J]. Journal of Membrane Science, 2020, 593: 117406. |
11 | 马砺, 刘西西, 周莎莎, 等. 淀粉基接枝丙烯酸钠复合高吸水树脂材料的制备及性能测试[J]. 材料导报, 2021, 35(22): 22172-22177. |
MA Li, LIU Xixi, ZHOU Shasha, et al. Preparation and performance test of starch-based grafted sodium acrylate composite super absorbent resin material[J]. Materials Reports, 2021, 35(22): 22172-22177. | |
12 | XIE Hengxin, PAN Jiancong, WEI Biaowen, et al. Anti-fouling anion exchange membrane for electrodialysis fabricated by in-situ interpenetration of the ionomer to gradient cross-linked network of Ca-Na alginate[J]. Desalination, 2021, 505: 115005. |
13 | LENCINA M M S, CIOLINO A E, ANDREUCETTI N A, et al. Thermoresponsive hydrogels based on alginate-g-poly(N-isopropylacrylamide) copolymers obtained by low doses of gamma radiation[J]. European Polymer Journal, 2015, 68: 641-649. |
14 | 杨晓芳, 魏铭, 孙力. 聚丙烯酰胺/碳量子点/氧化石墨烯复合水凝胶制备及其性能分析[J]. 化工进展, 2021, 40(S2): 301-308. |
YANG Xiaofang, WEI Ming, SUN Li. Preparation and research of PAM/CQDs/GO composite hydrogel[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 301-308. | |
15 | 沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037. |
SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037. | |
16 | KOPAČ T, RUČIGAJ A, KRAJNC M. The mutual effect of the crosslinker and biopolymer concentration on the desired hydrogel properties[J]. International Journal of Biological Macromolecules, 2020, 159: 557-569. |
17 | 李亚林, 刘蕾, 关明玥, 等. 纳米CaO2激发餐厨垃圾碳组分合成水凝胶及溶胀性能分析[J]. 化工进展, 2022, 41(11): 6120-6129. |
LI Yalin, LIU Lei, GUAN Mingyue, et al. Synthesis and swelling property analysis of hydrogel based on carbon component of food waste excited by nano-sized calcium peroxide[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6120-6129. | |
18 | 许健, 韩宇晴, 王杰, 等. 聚丙烯酸镁/丙烯酸钠双交联水凝胶的制备及性能研究[J]. 现代化工, 2021, 41(4): 98-102. |
XU Jian, HAN Yuqing, WANG Jie, et al. Synthesis and characterization of poly(magnesium acrylate-sodium acrylate) hydrogels with dually cross-linked structure[J]. Modern Chemical Industry, 2021, 41(4): 98-102. | |
19 | 张彦, 汪伟, 谢锐, 等.负载酶@ZIF-8复合物的聚合物微颗粒可控制备[J]. 化工进展, 2022, 41(4): 2022-2028. |
ZHANG Yan, WANG Wei, XIE Rui, et al. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. | |
20 | 王静, 刘红科, 刘平生, 等. 高强度水凝胶纳米复合材料的研究进展[J]. 材料导报, 2018, 32(1): 67-75. |
WANG Jing, LIU Hongke, LIU Pingsheng, et al. Advances in hydrogel nanocomposites with high mechanical strength[J]. Materials Review, 2018, 32(1): 67-75. | |
21 | MOZTAHIDA M, LEE Dae Sung. Photocatalytic degradation of methylene blue with P25/graphene/polyacrylamide hydrogels: Optimization using response surface methodology[J]. Journal of Hazardous Materials, 2020, 400: 123314. |
22 | TSAI Fu-Hsuan, KITAMURA Y, KOKAWA M. Liquid-core alginate hydrogel beads loaded with functional compounds of radish by-products by reverse spherification: Optimization by response surface methodology[J]. International Journal of Biological Macromolecules, 2017, 96: 600-610. |
23 | ZHANG Keyuan, LI Fei, WU Yan, et al. Construction of ionic thermo-responsive PNIPAM/γ-PGA/PEG hydrogel as a draw agent for enhanced forward-osmosis desalination[J]. Desalination, 2020, 495: 114667. |
24 | SUN Guohui, ZHANG Xin, BAO Zixian, et al. Reinforcement of thermoplastic chitosan hydrogel using chitin whiskers optimized with response surface methodology[J]. Carbohydrate Polymers, 2018, 189: 280-288. |
25 | YUE Yiying, LUO Huiming, HAN Jingquan, et al. Assessing the effects of cellulose-inorganic nanofillers on thermo/pH-dual responsive hydrogels[J]. Applied Surface Science, 2020, 528: 146961. |
26 | RAZMJOU A, LIU Q, SIMON G P, et al. Bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy[J]. Environmental Science & Technology, 2013, 47(22): 13160-13166. |
27 | WANG Jichao, GAO Shanshan, TIAN Jiayu, et al. Recent developments and future challenges of hydrogels as draw solutes in forward osmosis process[J]. Water, 2020, 12(3): 692. |
[1] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[2] | LI Mengyuan, GUO Fan, LI Qunsheng. Simulation and optimization of the third and fourth distillation columns in the recovery section of polyvinyl alcohol production [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 113-123. |
[3] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[4] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[5] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[6] | QIAN Sitian, PENG Wenjun, ZHANG Xianming. Comparative analysis of forming cyclic oligomers via PET melt polycondensation and cyclodepolymerization [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4808-4816. |
[7] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[8] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[9] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[10] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[11] | GU Shiya, DONG Yachao, LIU Linlin, ZHANG Lei, ZHUANG Yu, DU Jian. Design and optimization of pipeline system for carbon capture considering intermediate nodes [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2799-2808. |
[12] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[13] | ZHU Hao, LIU Hanfei, GAO Yuan, BAI Rongrong, NI Songbo, HUANG Yiping, LI Qingtong, LI Xiaodong, HAN Weiqing. Parameter optimization of jet aeration in catalytic ozonation system and analysis of stage oxidation of phenol [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2717-2723. |
[14] | WANG Dong, YU Pinhua, CHEN Bin, XIAO Ang, CHEN Feng, JIANG Yangyang. Energy saving optimization of cyclohexane three-effect distillation in cyclohexanone production [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2245-2251. |
[15] | MA Runmei, YANG Haichao, LI Zhengda, LI Shuangxi, ZHAO Xiang, ZHANG Guoqing. Influence analysis of coating on deformation and frictional wear of mechanical seal end for high-speed bearing cavity [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1688-1697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |