Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4450-4463.DOI: 10.16085/j.issn.1000-6613.2023-1179
• Materials science and technology • Previous Articles
REN Guoyu1,2(), TUO Yun1, ZHENG Wenjie1, QIAO Zeting2, REN Zhuangzhuang2, ZHAO Yali2, SHANG Junfei2, CHEN Xiaodong1, GAO Xianghu3
Received:
2023-07-11
Revised:
2023-09-13
Online:
2024-09-02
Published:
2024-08-15
Contact:
REN Guoyu
任国瑜1,2(), 妥云1, 郑文杰1, 谯泽庭2, 任壮壮2, 赵娅莉2, 尚军飞2, 陈晓东1, 高祥虎3
通讯作者:
任国瑜
作者简介:
任国瑜(1986—),女,博士,副教授,研究方向为过程强化和材料合成技术。E-mail:625503913@qq.com。
基金资助:
CLC Number:
REN Guoyu, TUO Yun, ZHENG Wenjie, QIAO Zeting, REN Zhuangzhuang, ZHAO Yali, SHANG Junfei, CHEN Xiaodong, GAO Xianghu. Research progress and application of superhydrophobic nano-coating technology[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4450-4463.
任国瑜, 妥云, 郑文杰, 谯泽庭, 任壮壮, 赵娅莉, 尚军飞, 陈晓东, 高祥虎. 超疏水纳米涂层技术研究进展及应用[J]. 化工进展, 2024, 43(8): 4450-4463.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1179
1 | GAO Xuefeng, JIANG Lei. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36. |
2 | 江雷. 具有特殊浸润性的仿生智能纳米界面材料[J]. 科学观察, 2007, 2(5): 38. |
JIANG Lei. Bionic intelligent nano-interface material with special wettability[J]. Science Focus, 2007, 2(5): 38. | |
3 | OKADA Ayako, NIKAIDO Toru, IKEDA Masaomi, et al. Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties[J]. Dental Materials Journal, 2008, 27(4): 565-572. |
4 | 郑建勇, 钟明强, 冯杰. 基于超疏水原理的自清洁表面研究进展及产业化状况[J]. 化工进展, 2010, 29(2): 281-284, 288. |
ZHENG Jianyong, ZHONG Mingqiang, FENG Jie. Research progress and industrialization status of superhydrophobic self-cleaning surfaces[J]. Chemical Industry and Engineering Progress, 2010, 29(2): 281-284, 288. | |
5 | 黄启舒, 许里杰. 超疏水自清洁涂料的研究与应用现状[J]. 化工新型材料, 2020, 48(5): 219-222, 228. |
HUANG Qishu, XU Lijie. Research and application situation of superhydrophobic self-cleaning coating[J]. New Chemical Materials, 2020, 48(5): 219-222, 228. | |
6 | CHEN Yuan, GAO Xinrui, HUANG Huadong, et al. Superhydrophobic, self-cleaning, and robust properties of oriented polylactide imparted by surface structuring[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6296-6304. |
7 | SHANG Yanwei, SI Yang, RAZA Aikifa, et al. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil–water separation[J]. Nanoscale, 2012, 4(24): 7847-7854. |
8 | 梁格, 黄翔峰, 刘婉琪, 等. 超疏水三维多孔材料在乳化液油水分离中的应用研究进展[J]. 化工进展, 2022, 41(12): 6557-6572. |
LIANG Ge, HUANG Xiangfeng, LIU Wanqi, et al. A review of superhydrophobic three-dimensional porous materials for oil/water separation of emulsions[J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6557-6572. | |
9 | 薛星星, 孙雪菲, 万章弘, 等. 超疏水/超亲油RGO/TiO2@MS海绵的制备及油水分离性能[J]. 合肥工业大学学报(自然科学版), 2023, 46(4): 512-518, 553. |
XUE Xingxing, SUN Xuefei, WAN Zhanghong, et al. Preparation of super-hydrophobic/super-lipophilic RGO/TiO2@MS sponge and oil-water separation performance[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(4): 512-518, 553. | |
10 | 刘瑞, 李录平, 龚妙. 铜基超疏水表面防覆冰/抗霜冻特性分析[J]. 化工进展, 2019, 38(S1): 166-171. |
LIU Rui, LI Luping, GONG Miao. Anti-icing/anti-frost performers of copper-based superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 166-171. | |
11 | 沈一洲, 谢欣瑜, 陶杰, 等. 超疏水防冰材料的理论基础与应用研究进展[J]. 中国材料进展, 2022, 41(5): 388-397. |
SHEN Yizhou, XIE Xinyu, TAO Jie, et al. Review on theoretical foundations and applications of superhydrophobic anti-icing materials[J]. Materials China, 2022, 41(5): 388-397. | |
12 | SELIM Mohamed S, FATTHALLAH Nesreen A, SHENASHEN Mohamed A, et al. Bioinspired graphene oxide-magnetite nanocomposite coatings as protective superhydrophobic antifouling surfaces[J]. Langmuir, 2023, 39(6): 2333-2346. |
13 | 黄谦, 贺小燕, 常江凡, 等. 基于超疏水和卤代过氧化物酶活性协同防污的氧化铈纳米涂层研究[J]. 表面技术, 2022, 51(5): 283-292. |
HUANG Qian, HE Xiaoyan, CHANG Jiangfan, et al. CeO2 nanocomposite coating with synergistic antifouling effects of superhydrophobicity and haloperoxidase activity[J]. Surface Technology, 2022, 51(5): 283-292. | |
14 | 刘战剑, 付雨欣, 任丽娜, 等. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
LIU Zhanjian, FU Yuxin, REN Lina, et al. New research progress of superhydrophobic coatings in the field of anti-corrosion and anti-scaling[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2999-3011. | |
15 | LIU Ning, YANG Zhensheng, SUN Yue, et al. Slippery mechanism for enhancing separation and anti-fouling of the superhydrophobic membrane in a water-in-oil emulsion: Evaluating water adhesion of the membrane surface[J]. Langmuir, 2022, 38(27): 8312-8323. |
16 | SHATERI KHALIL-ABAD Mohammad, YAZDANSHENAS Mohammad E. Superhydrophobic antibacterial cotton textiles[J]. Journal of Colloid and Interface Science, 2010, 351(1): 293-298. |
17 | AGBE Henry, SARKAR Dilip Kumar, CHEN X-Grant, et al. Silver-polymethylhydrosiloxane nanocomposite coating on anodized aluminum with superhydrophobic and antibacterial properties[J]. ACS Applied Bio Materials, 2020, 3(7): 4062-4073. |
18 | RAZAVI Seyed Mohammad Reza, Junho OH, HAASCH Richard T, et al. Environment-friendly antibiofouling superhydrophobic coatings[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 14509-14520. |
19 | ALMEIDA Riberet. Anti-fog coatings using the super-hydrophobic approach[D]. Columbia: University of Missouri Libraries, M.S., 2008. |
20 | 袁雨婷, 冯勇超, 易红宏, 等. 体相超疏水材料及其在大气污染控制领域的应用研究进展[J]. 化工进展, 2021, 40(8): 4327-4345. |
YUAN Yuting, FENG Yongchao, YI Honghong, et al. Research progress of superhydrophobic surface materials and its application in air pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345. | |
21 | 郑龙珠, 苏晓竞, 李红强, 等. 功能性超疏水表面的构建及其应用进展[J]. 化工进展, 2021, 40(5): 2634-2645. |
ZHENG Longzhu, SU Xiaojing, LI Hongqiang, et al. Progress in construction and application of functional superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2634-2645. | |
22 | BALL Philip. Engineering Shark skin and other solutions[J]. Nature, 1999, 400(6744): 507-509. |
23 | ZHENG Yongmei, BAI Hao, HUANG Zhongbing, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
24 | LIU Mingjie, WANG Shutao, JIANG Lei. Nature-inspired superwettability systems[J]. Nature Reviews Materials, 2017, 2: 17036. |
25 | KOSTAL Elisabeth, STROJ Sandra, KASEMANN Stephan, et al. Fabrication of biomimetic fog-collecting superhydrophilic-superhydrophobic surface micropatterns using femtosecond lasers[J]. Langmuir, 2018, 34(9): 2933-2941. |
26 | CHEN Cheng, LIU Mingming, ZHANG Liping, et al. Mimicking from rose petal to lotus leaf: Biomimetic multiscale hierarchical particles with tunable water adhesion[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7431-7440 |
27 | ZHU Hai, CAI Si, LIAO Guangfu, et al. Recent advances in photocatalysis based on bioinspired super-wettabilities[J]. ACS Catalysis, 2021, 11(24): 14751-14771. |
28 | SI Yifan, GUO Zhiguang. Superhydrophobic nanocoatings: From materials to fabrications and to applications[J]. Nanoscale, 2015, 7(14): 5922-5946. |
29 | LIU Kesong, CAO Moyuan, FUJISHIMA Akira, et al. Bio-inspired titanium dioxide materials with special wettability and their applications[J]. Chemical Reviews, 2014, 114(19): 10044-10094. |
30 | 纪浩楠, 易昌凤, 徐祖顺, 等. 二氧化钛/ZIF-8复合超疏水海绵的制备及其油水分离性能[J]. 复合材料学报, 2022, 39(12): 5758-5767. |
JI Haonan, YI Changfeng, XU Zushun, et al. Preparation of TiO2/ZIF-8 composite super-hydrophobic sponge and its oil-water separation performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5758-5767. | |
31 | LAI Yuekun, TANG Yuxin, GONG Jiaojiao, et al. Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging[J]. Journal of Materials Chemistry, 2012, 22(15): 7420-7426. |
32 | WANG Chih-Feng, CHEN Weiyan, CHENG Huy-Zu, et al. Pressure-proof superhydrophobic films from flexible carbon nanotube/polymer coatings[J]. The Journal of Physical Chemistry C, 2010, 114(37): 15607-15611. |
33 | REN Zhiying, FAN Mingzhi, ZHANG Zhen, et al. Superhydrophobic carbon nanotube–metal rubber composites for emulsion separation[J]. ACS Applied Nano Materials, 2021, 4(12): 13643-13654. |
34 | 刘晓燕, 赵雨新, 赵海谦, 等. 铝基碳纳米管阵列超疏水表面的制备[J]. 当代化工, 2021, 50(3): 576-580. |
LIU Xiaoyan, ZHAO Yuxin, ZHAO Haiqian, et al. Preparation of superhydrophobic surface of aluminum based carbon nanotube arrays[J]. Contemporary Chemical Industry, 2021, 50(3): 576-580. | |
35 | LI Yang, WANG Jingfeng, KONG Yi, et al. Micro/Nano hierarchical peony-like Al doped ZnO superhydrophobic film: The guiding effect of (100) preferred seed layer[J]. Scientific Reports, 2016, 6: 19187. |
36 | 孙坤. 纳米结构氧化锌/二氧化硅壳微胶囊化的正二十二烷超疏水热储能材料的设计[D]. 北京: 北京化工大学, 2019. |
SUN Kun. Design of nanostructured zinc oxide/silica shell microencapsulated N-docosane superhydrophobic thermal energy storage material[D].Beijing: Beijing University of Chemical Technology, 2019. | |
37 | 郝李伟, 董如林, 陈智栋, 等. 超疏水仿生氧化锌纳米棒阵列薄膜的合成[J]. 化工新型材料, 2020, 48(11): 69-71, 76. |
HAO Liwei, DONG Rulin, CHEN Zhidong, et al. Synthesis of superhydrophobic biomimetic ZnO nanorod array film[J]. New Chemical Materials, 2020, 48(11): 69-71, 76. | |
38 | SU Xiaojing, LI Hongqiang, LAI Xuejun, et al. Vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic Polydimethylsiloxane@Silica surface on polyester textile for oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(33): 28089-28099. |
39 | 侯成敏, 李娜, 董海涛, 等. 含氟环氧树脂杂化纳米二氧化硅超疏水材料的制备与性能[J]. 应用化学, 2019, 36(7): 798-806. |
HOU Chengmin, LI Na, DONG Haitao, et al. Preparation and performance of hybrid superhydrophobic materials from fluorinated epoxy resin and silica nanoparticles[J]. Chinese Journal of Applied Chemistry, 2019, 36(7): 798-806. | |
40 | GHODRATI Mohammad, Mehdi MOUSAVI-KAMAZANI, BAHRAMI Zohreh. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces[J]. Scientific Reports, 2023, 13: 548. |
41 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
42 | CHEN Yun, LONG Junyu, XIE Bin, et al. One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4647-4655. |
43 | PATHREEKER Shreyas, CHANDO Paul, CHEN Fuhao, et al. Superhydrophobic polymer composite surfaces developed via photopolymerization[J]. ACS Applied Polymer Materials, 2021, 3(9): 4661-4672. |
44 | LI Yang, CHEN Shanshan, WU Mengchun, et al. All spraying processes for the fabrication of robust, self-healing, superhydrophobic coatings[J]. Advanced Materials, 2014, 26(20): 3344-3348. |
45 | LI Xuemei, REINHOUDT David, Mercedes CREGO-CALAMA. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces[J]. Chemical Society Reviews, 2007, 36(8): 1350. |
46 | GUO Zhiguang, LIU Weimin, SU Baolian. Superhydrophobic surfaces: From natural to biomimetic to functional[J]. Journal of Colloid and Interface Science, 2011, 353(2): 335-355. |
47 | LI Lingxiao, LI Bucheng, DONG Jie, et al. Roles of silanes and silicones in forming superhydrophobic and superoleophobic materials[J]. Journal of Materials Chemistry A, 2016, 4(36): 13677-13725. |
48 | BAYER Ilker S. Superhydrophobic coatings from ecofriendly materials and processes: A review[J]. Advanced Materials Interfaces, 2020, 7(13): 2000095. |
49 | SHAHID Mohammad, MAITI Saptarshi, ADIVAREKAR Ravindra V, et al. Biomaterial based fabrication of superhydrophobic textiles—A review[J]. Materials Today Chemistry, 2022, 24: 100940. |
50 | GONG Xiao, HE Shuang. Highly durable superhydrophobic polydimethylsiloxane/silica nanocomposite surfaces with good self-cleaning ability[J]. ACS Omega, 2020, 5(8): 4100-4108. |
51 | ALAWAJJI Raad A, KANNARPADY Ganesh K, BIRIS Alexandru S. Fabrication of transparent superhydrophobic polytetrafluoroethylene coating[J]. Applied Surface Science, 2018, 444: 208-215. |
52 | SHARMA Deepak Kumar, SIKARWAR Basant Singh, UPADHYAY Sumant, et al. Super-hydrophobic nanostructured silica coating on aluminum substrate for moist air condensation[J]. Journal of Materials Engineering and Performance, 2022, 31(2): 1266-1276. |
53 | ZHU Jilin, FANG Kuanjun, CHEN Weichao, et al. Preparation of superhydrophobic, antibacterial and photocatalytic cotton by the synergistic effect of dual nanoparticles of rGO-TiO2/QAS-SiO2 [J]. Industrial Crops and Products, 2022, 189: 115801. |
54 | LUO Guanzhou, WEN Lanfang, YANG Kai, et al. Robust and durable fluorinated 8-MAPOSS-based superamphiphobic fabrics with buoyancy boost and drag reduction[J]. Chemical Engineering Journal, 2020, 383: 123125. |
55 | CHEN Ying, YANG Ge, JING Zhihong. Synthesis and characterization of superhydrophobic CeO2/ZnO nanotube arrays with low adhesive force[J]. Materials Letters, 2016, 176: 290-293. |
56 | BIAN Shunuo, XU Junhua, YU Lihua, et al. Preparation and properties of superhydrophobic ZnO nanorod-based nanocomposite on the surface of stainless steel mesh[J]. Journal of Bionic Engineering, 2023, 20(3): 910-922. |
57 | ARMELIN Elaine, MORADI Sona, HATZIKIRIAKOS Savvas G, et al. Designing stainless steel surfaces with anti-pitting properties applying laser ablation and organofluorine coatings[J]. Advanced Engineering Materials, 2018, 20(6): 1700814. |
58 | Jiajie LYU, XING Suli, MENG Yunyun, et al. Flexible superhydrophobic ZnO coating harvesting antibacterial and washable properties[J]. Materials Letters, 2022, 314: 131730. |
59 | JUNG Kyung Kuk, JUNG Young, CHOI Chang Jun, et al. Highly reliable superhydrophobic surface with carbon nanotubes immobilized on a PDMS/adhesive multilayer[J]. ACS Omega, 2018, 3(10): 12956-12966. |
60 | YE Hanchen, CHEN Dongyun, LI Najun, et al. Durable and robust self-healing superhydrophobic Co-PDMS@ZIF-8-coated MWCNT films for extremely efficient emulsion separation[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38313-38320. |
61 | ZHANG Fan, QIAN Hongchang, WANG Luntao, et al. Superhydrophobic carbon nanotubes/epoxy nanocomposite coating by facile one-step spraying[J]. Surface and Coatings Technology, 2018, 341: 15-23. |
62 | JIANG Guo, CHEN Liang, ZHANG Shuidong, et al. Superhydrophobic SiC/CNTs coatings with photothermal deicing and passive anti-icing properties[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36505-36511. |
63 | NINE Md J, COLE Martin A, JOHNSON Lucas, et al. Robust superhydrophobic graphene-based composite coatings with self-cleaning and corrosion barrier properties[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28482-28493. |
64 | WU Muqiu, AN Rong, YADAV Sudheer Kumar, et al. Graphene tailored by Fe3O4 nanoparticles: Low-adhesive and durable superhydrophobic coatings[J]. RSC Advances, 2019, 9(28): 16235-16245. |
65 | YUN Xiawei, XIONG Zhiyuan, HE Yaning, et al. Superhydrophobic lotus-leaf-like surface made from reduced graphene oxide through soft-lithographic duplication[J]. RSC Advances, 2020, 10(9): 5478-5486. |
66 | CHOBAOMSUP Viriyah, METZNER Martin, BOONYONGMANEERAT Yuttanant. Superhydrophobic surface modification for corrosion protection of metals and alloys[J]. Journal of Coatings Technology and Research, 2020, 17(3): 583-595. |
67 | FENG Libang, ZHANG Hongxia, WANG Zilong, et al. Superhydrophobic aluminum alloy surface: Fabrication, structure, and corrosion resistance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441: 319-325. |
68 | ZANG Dongmian, ZHU Ruiwen, ZHANG Wen, et al. Corrosion-resistant superhydrophobic coatings on Mg alloy surfaces inspired by lotus seedpod[J]. Advanced Functional Materials, 2017, 27(8): 1605446. |
69 | GU Rong, SHEN Jie, HAO Qing, et al. Harnessing superhydrophobic coatings for enhancing the surface corrosion resistance of magnesium alloys[J]. Journal of Materials Chemistry B, 2021, 9(48): 9893-9899. |
70 | BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8. |
71 | 王宇捷. 荷叶效应及其在生活中的应用[J]. 当代化工研究, 2018(9): 122-123. |
WANG Yujie. Lotus leaf effect and its application in life[J]. Modern Chemical Research, 2018(9): 122-123. | |
72 | WISDOM Katrina M, WATSON Jolanta A, QU Xiaopeng, et al. Self-cleaning of superhydrophobic surfaces by self-propelled jumping condensate[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(20): 7992-7997. |
73 | HANSEN W R, AUTUMN K. Evidence for self-cleaning in gecko setae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(2): 385-389. |
74 | GILLIES Andrew G, PUTHOFF Jonathan, COHEN Michael J, et al. Dry self-cleaning properties of hard and soft fibrillar structures[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6081-6088. |
75 | CHEN Pei, LI Xudong, MA Junfei, et al. Bioinspired photodetachable dry self-cleaning surface[J]. Langmuir, 2019, 35(19): 6379-6386. |
76 | MEILERT K T, LAUB D, KIWI J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers[J]. Journal of Molecular Catalysis A: Chemical, 2005, 237(1/2): 101-108. |
77 | NAKATA Kazuya, FUJISHIMA Akira. TiO2 photocatalysis: Design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189. |
78 | 韦玉辉, 郑晨, 程尔骕, 等. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(5): 171-176. |
WEI Yuhui, ZHENG Chen, CHENG Erxiao, et al. Preparation and properties of photocatalytic self-cleaning aramid fabrics[J]. Journal of Textile Research, 2023, 44(5): 171-176. | |
79 | WEN Li, WEAVER James C, LAUDER George V. Biomimetic shark skin: Design, fabrication and hydrodynamic function[J]. The Journal of Experimental Biology, 2014, 217(Pt 10): 1656-1666. |
80 | TIAN L, YIN Y, JIN H, et al. Novel marine antifouling coatings inspired by corals[J]. Materials Today Chemistry, 2020, 17: 100294. |
81 | CHIEN Hsiu-Wen, CHEN Xiangyu, TSAI Wen-Pei, et al. Inhibition of biofilm formation by rough shark skin-patterned surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2020, 186: 110738. |
82 | BAI Chunli. Ascent of nanoscience in China[J]. Science, 2005, 309(5731): 61-63. |
83 | 金小婷, 史诗, 陈欢欢, 等. 釉质表面超疏水凝胶纳米涂层的制备及其性能研究[J]. 口腔医学研究, 2020, 36(6): 585-590. |
JIN Xiaoting, SHI Shi, CHEN Huanhuan, et al. Preparation and performance of superhydrophobic gel nano-coating on enamel surface[J]. Journal of Oral Science Research, 2020, 36(6): 585-590. | |
84 | 闫茜, 谢谚, 盛学佳, 等. 超疏水纳米海绵制备及其二甲苯吸附性能[J]. 化工进展, 2020, 39(10): 4095-4101. |
YAN Xi, XIE Yan, SHENG Xuejia, et al. Preparation of superhydrophobic sponge and its adsorption performance for xylene[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4095-4101. | |
85 | ZHANG Ning, YANG Xianwen, WANG Yalun, et al. Hierarchically porous superhydrophobic sponge for oil-water separation[J]. Journal of Water Process Engineering, 2022, 46: 102590. |
86 | 丛真成, 陈德军, 郭皓, 等. 磁性石墨烯海绵复合材料的制备及其油水分离性能[J]. 精细石油化工, 2023, 40(3): 21-24. |
CONG Zhencheng, CHEN Dejun, GUO Hao, et al. Preparation of magnetic graphene sponge composite and its oil-water separation performance[J]. Speciality Petrochemicals, 2023, 40(3): 21-24. | |
87 | HUANG Pengke, WU Fei, SHEN Bin, et al. Bio-inspired lightweight polypropylene foams with tunable hierarchical tubular porous structure and its application for oil-water separation[J]. Chemical Engineering Journal, 2019, 370: 1322-1330. |
88 | 任龙芳, 汤正, 胡艳, 等. 疏水花生壳/聚氨酯复合泡沫的制备与油水分离性能[J]. 精细化工, 2023, 40(2): 263-271. |
REN Longfang, TANG Zheng, HU Yan, et al. Preparation and oil-water separation performance of hydrophobic peanut shell/polyurethane composite foam[J]. Fine Chemicals, 2023, 40(2): 263-271. | |
89 | UDAYAKUMAR Kavitha Vellopollath, GORE Prakash M, KANDASUBRAMANIAN Balasubramanian. Foamed materials for oil-water separation[J]. Chemical Engineering Journal Advances, 2021, 5: 100076. |
90 | LIU Xiaojuan, GE Lei, LI Wei, et al. Layered double hydroxide functionalized textile for effective oil/water separation and selective oil adsorption[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 791-800. |
91 | WU Jindan, WEI Wei, ZHAO Sufang, et al. Fabrication of highly underwater oleophobic textiles through poly(vinyl alcohol) crosslinking for oil/water separation: The effect of surface wettability and textile type[J]. Journal of Materials Science, 2017, 52(2): 1194-1202. |
92 | 余钰骢, 史晓龙, 刘琳, 等. 用于油水分离的超润湿性纺织品研究进展[J]. 纺织学报, 2020, 41(11): 189-196. |
YU Yucong, SHI Xiaolong, LIU Lin, et al. Recent progress in super wettable textiles for oil-water separation[J]. Journal of Textile Research, 2020, 41(11): 189-196. | |
93 | ADEBAJO M O, FROST R L, KLOPROGGE J T, et al. Porous materials for oil spill cleanup: A review of synthesis and absorbing properties[J]. Journal of Porous Materials, 2003, 10(3): 159-170. |
94 | CHU Zonglin, FENG Yujun, SEEGER Stefan. Oil/water separation with selective superantiwetting/superwetting surface materials[J]. Angewandte Chemie International Edition, 2015, 54(8): 2328-2338. |
95 | VIDIELLA DEL BLANCO Marta, FISCHER Eric Jean, CABANE Etienne. Underwater superoleophobic wood cross sections for efficient oil/water separation[J]. Advanced Materials Interfaces, 2017, 4(21): 1700584. |
96 | 张建强, 刘锡鲁, 甘绍朋, 等. 超疏水功能海绵油水分离性能的研究型实验设计与实践[J]. 实验室研究与探索, 2022, 41(6): 186-189. |
ZHANG Jianqiang, LIU Xilu, GAN Shaopeng, et al. Research-oriented experimental design and practice of oil-water separation performance of super-hydrophobic functional sponge[J]. Research and Exploration in Laboratory, 2022, 41(6): 186-189. | |
97 | MA Wenjing, ZHANG Mengjie, LIU Zhongche, et al. Fabrication of highly durable and robust superhydrophobic-superoleophilic nanofibrous membranes based on a fluorine-free system for efficient oil/water separation[J]. Journal of Membrane Science, 2019, 570/571: 303-313. |
98 | SUTAR Rajaram S, KULKARNI Narayan P, NAGAPPAN Saravanan, et al. Octadecyltrichlorosilane-modified superhydrophobic-superoleophilic stainless steel mesh for oil-water separation[J]. Macromolecular Symposia, 2021, 400(1): 2100096. |
99 | BAYRAM Fatma, MERCAN Emine Sevgili, KARAMAN Mustafa. One-step fabrication of superhydrophobic-superoleophilic membrane by initiated chemical vapor deposition method for oil-water separation[J]. Colloid and Polymer Science, 2021, 299(9): 1469-1477. |
100 | LIU Shuhao, ZHENG Jeremy, HAO Li, et al. Dual-functional, superhydrophobic coatings with bacterial anticontact and antimicrobial characteristics[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21311-21321. |
101 | MANOJ T P, RASITHA T P, VANITHAKUMARI S C, et al. A simple, rapid and single step method for fabricating superhydrophobic titanium surfaces with improved water bouncing and self cleaning properties[J]. Applied Surface Science, 2020, 512: 145636. |
102 | NASONGKLA Norased, TANESANUKUL Chayanan, NILYOK Sirawit, et al. Nano-coating of metronidazole on dental implants for antibacterial application[C]//2018 IEEE 12th International Conference on Nano/Molecular Medicine and Engineering (NANOMED). December 2-5, 2018, Waikiki Beach, HI, USA. IEEE, 2018: 59-62. |
103 | LI Wen, ZHAN Yanlong, YU Sirong. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives[J]. Progress in Organic Coatings, 2021, 152: 106117. |
104 | PIKE W S. Extreme warm frontal icing on 25 February 1994 causes an aircraft accident near Uttoxeter[J]. Meteorological Applications, 1995, 2(3): 273-279. |
105 | MARWITZ J, POLITOVICH M, BERNSTEIN B, et al. Meteorological conditions associated with the ATR72 aircraft accident near roselawn, Indiana, on 31 October 1994[J]. Bulletin of the American Meteorological Society, 1997, 78(1): 41-52. |
106 | 李哲, 徐浩军, 薛源, 等. 结冰对飞机飞行安全的影响机理与防护研究[J]. 飞行力学, 2016, 34(4): 10-14. |
LI Zhe, XU Haojun, XUE Yuan, et al. Research on flight safety effect mechanism and protection for aircraft icing[J]. Flight Dynamics, 2016, 34(4): 10-14. | |
107 | JAMIL Muhammad Imran, Abid ALI, Fazal HAQ, et al. Icephobic strategies and materials with superwettability: Design principles and mechanism[J]. Langmuir, 2018, 34(50): 15425-15444. |
108 | ZHOU Benzhi, GU Lianhong, DING Yihui, et al. The great 2008 Chinese ice storm: Its socioeconomic-ecological impact and sustainability lessons learned[J]. Bulletin of the American Meteorological Society, 2011, 92(1): 47-60. |
109 | 肖振. 耐磨超疏水涂层的防覆冰特性及其机理研究[D]. 南京: 东南大学, 2021. |
XIAO Zhen. Study on anti-icing characteristics and mechanism of wear-resistant superhydrophobic coating[D].Nanjing: Southeast University, 2021. | |
110 | LI Yizheng, SHA Aimin, TIAN Zhen, et al. Review on superhydrophobic anti-icing coating for pavement[J]. Journal of Materials Science, 2023, 58(8): 3377-3400. |
111 | 李君, 矫维成, 王寅春, 等. 超疏水材料在防/除冰技术中的应用研究进展[J]. 复合材料学报, 2022, 39(1): 23-38. |
LI Jun, JIAO Weicheng, WANG Yinchun, et al. Research progress on application of superhydrophobic materials in anti-icing and de-icing technology[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 23-38. | |
112 | 蒋炜, 杨超, 袁绍军, 等. 仿生超疏水金属材料制备技术及在化工领域应用进展[J]. 化工进展, 2019, 38(1): 344-364. |
JIANG Wei, YANG Chao, YUAN Shaojun, et al. Bioinspired superhydrophobic metal materials: Preparation methods and applications in chemical engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 344-364. | |
113 | 刘明明, 侯媛媛, 陈唐建, 等. 超疏水防/除冰材料的基础理论和制备技术研究进展[J]. 材料保护, 2023, 56(5): 40-62. |
LIU Mingming, HOU Yuanyuan, CHEN Tangjian, et al. Research progress of basic theory and preparation technology of superhydrophobic anti/de-icing materials[J]. Materials Protection, 2023, 56(5): 40-62. | |
114 | LI Jiang, WANG Wenjun, MEI Xuesong, et al. Effects of surface wettability on the dewetting performance of hydrophobic surfaces[J]. ACS Omega, 2020, 5(44): 28776-28783. |
115 | WU Binrui, CUI Xin, JIANG Huayang, et al. A superhydrophobic coating harvesting mechanical robustness, passive anti-icing and active de-icing performances[J]. Journal of Colloid and Interface Science, 2021, 590: 301-310. |
116 | KHADAK A, SUBESHAN B, ASMATULU R. Studies on de-icing and anti-icing of carbon fiber-reinforced composites for aircraft surfaces using commercial multifunctional permanent superhydrophobic coatings[J]. Journal of Materials Science, 2021, 56(4): 3078-3094. |
117 | ZHANG Yinglu, CHEN Liang, LIN Zhenzhen, et al. Highly sensitive dissolved oxygen sensor with a sustainable antifouling, antiabrasion, and self-cleaning superhydrophobic surface[J]. ACS Omega, 2019, 4(1): 1715-1721. |
118 | ZHU Xiaoli, CHEN Yaoyao, FENG Chang, et al. Assembly of self-cleaning electrode surface for the development of refreshable biosensors[J]. Analytical Chemistry, 2017, 89(7): 4131-4138. |
119 | WU Jingjing, LI Hongqiang, LAI Xuejun, et al. Conductive and superhydrophobic F-rGO@CNTs/chitosan aerogel for piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2020, 386: 123998. |
120 | DONG Zheqin, VUCKOVAC Maja, CUI Wenjuan, et al. 3D printing of superhydrophobic objects with bulk nanostructure[J]. Advanced Materials, 2021, 33(45): e2106068. |
121 | LIAO Kai, WANG Wenjun, MEI Xuesong, et al. Stable and drag-reducing superhydrophobic silica glass microchannel prepared by femtosecond laser processing: Design, fabrication, and properties[J]. Materials & Design, 2023, 225: 111501. |
122 | WANG Cong, DING Kaiwen, SONG Yuxin, et al. Femtosecond laser patterned superhydrophobic surface with anisotropic sliding for droplet manipulation[J]. Optics & Laser Technology, 2024, 168: 109829. |
123 | LI Chang, CHEN Haolong, FAN Yue, et al. Functionalized graphene modified styrene-divinylbenzene copolymer as a superhydrophobic catalyst carrier for hydrogen-water liquid phase catalytic exchange[J]. International Journal of Hydrogen Energy, 2023, 48(9): 3520-3533. |
124 | LU Zengqi, FU Xiaolong, LI Jiamao, et al. Superhydrophobic Pt@SBA-15 catalyst for tritium separation in liquid phase catalytic exchange[J]. International Journal of Hydrogen Energy, 2023, 48(5): 1979-1987. |
125 | KIM Dohun, ALAM Khurshed, HAN Mi-Kyung, et al. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction[J]. Journal of Colloid and Interface Science, 2023, 633: 53-59. |
126 | Zhexin LYU, YU Sirong, SONG Kaixing, et al. Fabrication of a leaf-like superhydrophobic CuO coating on 6061Al with good self-cleaning, mechanical and chemical stability[J]. Ceramics International, 2020, 46(10): 14872-14883. |
127 | HAN Xutong, YANG Fuchao, FU Jing, et al. A bio-design of superhydrophobic nano-coating from ZnO and studies of its green photoluminescence inspired by lotus leaf[J]. Chemistry Letters, 2018, 47(7): 872-874. |
128 | SUTHA S, SURESH Sisira, Baldev RAJ, et al. Transparent alumina based superhydrophobic self-cleaning coatings for solar cell cover glass applications[J]. Solar Energy Materials and Solar Cells, 2017, 165: 128-137. |
[1] | WU Zeliang, GUAN Qihui, CHEN Shixia, WANG Jun. Advances in selective hydrogenation of alkynes to alkenes [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4366-4381. |
[2] | ZHANG Yesu, QUAN Yanhong, DING Xinxin, REN Jun. Synthesis and application of chainlike MFI type zeolites [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4382-4392. |
[3] | FU Tao, LI Li, GAO Lining, ZHU Fuwei, CAO Weiye, CHEN Huaxin. Cement-based boron-doped graphite phase carbon nitride material degrades NO [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. |
[4] | WANG Yufei, JIA Yu, ZHANG Yisheng, XUE Wei, LI Fang, WANG Yanji. Synthesis of p-aminophenol by transfer hydrogenation of nitrobenzene using formic acid as hydrogen source [J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4421-4431. |
[5] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[6] | WANG Lina, WU Jinsheng. Research progress of synthesis and application of covalent organic frameworks [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3834-3856. |
[7] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[8] | YANG Xin, ZHONG Chengwei, YANG Zhishan, ZHU Weiwei, WANG Wenhao, YU Jiang. Catalytic remediation of polycyclic aromatic hydrocarbons contaminated soil by synthetic siderite and its derivatives [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4118-4127. |
[9] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[10] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[11] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[12] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[13] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[14] | WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610. |
[15] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |