Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (8): 4432-4449.DOI: 10.16085/j.issn.1000-6613.2023-1235
• Materials science and technology • Previous Articles
XIE Juan1,2,3(), HE Wen1, ZHAO Xucheng1, LI Shuaihui1, LU Zhenzhen1, DING Zheyu1
Received:
2023-07-19
Revised:
2023-10-10
Online:
2024-09-02
Published:
2024-08-15
Contact:
XIE Juan
谢娟1,2,3(), 贺文1, 赵勖丞1, 李帅辉1, 卢真真1, 丁哲宇1
通讯作者:
谢娟
作者简介:
谢娟(1981—),女,副教授,硕士生导师,研究方向为新型建筑材料、沥青与改性沥青技术。E-mail:xiejuan08@126.com。
基金资助:
CLC Number:
XIE Juan, HE Wen, ZHAO Xucheng, LI Shuaihui, LU Zhenzhen, DING Zheyu. Research progress on the application of molecular dynamics simulation in asphalt systems[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4432-4449.
谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1235
沥青 四组分 | 分子 | 分子 化学式 | 分子量 /g·mol-1 | 分子数 | ||
---|---|---|---|---|---|---|
AAA-1 | AAK-1 | AAM-1 | ||||
沥青质 | As-1 | C42H54O | 574.893 | 3 | 3 | 1 |
As-2 | C66H81N | 888.381 | 2 | 2 | 1 | |
As-3 | C51H62S | 707.117 | 3 | 3 | 1 | |
饱和分 | Sa-1 | C30H62 | 422.826 | 4 | 2 | 1 |
Sa-2 | C35H62 | 482.881 | 4 | 2 | 1 | |
芳香分 | Ar-1 | C35H44 | 464.737 | 11 | 10 | 20 |
Ar-2 | C30H46 | 406.698 | 13 | 10 | 21 | |
胶质 | Re-1 | C40H59N | 553.919 | 4 | 4 | 10 |
Re-2 | C40H60S | 572.980 | 4 | 4 | 10 | |
Re-3 | C18H10S2 | 290.398 | 15 | 12 | 4 | |
Re-4 | C36H57N | 503.859 | 4 | 4 | 10 | |
Re-5 | C29H50O | 414.718 | 5 | 4 | 10 |
沥青 四组分 | 分子 | 分子 化学式 | 分子量 /g·mol-1 | 分子数 | ||
---|---|---|---|---|---|---|
AAA-1 | AAK-1 | AAM-1 | ||||
沥青质 | As-1 | C42H54O | 574.893 | 3 | 3 | 1 |
As-2 | C66H81N | 888.381 | 2 | 2 | 1 | |
As-3 | C51H62S | 707.117 | 3 | 3 | 1 | |
饱和分 | Sa-1 | C30H62 | 422.826 | 4 | 2 | 1 |
Sa-2 | C35H62 | 482.881 | 4 | 2 | 1 | |
芳香分 | Ar-1 | C35H44 | 464.737 | 11 | 10 | 20 |
Ar-2 | C30H46 | 406.698 | 13 | 10 | 21 | |
胶质 | Re-1 | C40H59N | 553.919 | 4 | 4 | 10 |
Re-2 | C40H60S | 572.980 | 4 | 4 | 10 | |
Re-3 | C18H10S2 | 290.398 | 15 | 12 | 4 | |
Re-4 | C36H57N | 503.859 | 4 | 4 | 10 | |
Re-5 | C29H50O | 414.718 | 5 | 4 | 10 |
沥青 | 老化 时间/h | 内聚能密度 /J·mol-3 | 弹性 模量E/GPa | 体积 模量K/GPa | 剪切 模量G/GPa |
---|---|---|---|---|---|
基质沥青 | 0 | 322.3 | 2.478 | 4.419 | 0.776 |
12 | 386.5 | 3.879 | 5.639 | 0.897 | |
改性沥青 | 0 | 432.6 | 3.909 | 6.087 | 1.032 |
12 | 486.3 | 4.901 | 6.897 | 1.111 |
沥青 | 老化 时间/h | 内聚能密度 /J·mol-3 | 弹性 模量E/GPa | 体积 模量K/GPa | 剪切 模量G/GPa |
---|---|---|---|---|---|
基质沥青 | 0 | 322.3 | 2.478 | 4.419 | 0.776 |
12 | 386.5 | 3.879 | 5.639 | 0.897 | |
改性沥青 | 0 | 432.6 | 3.909 | 6.087 | 1.032 |
12 | 486.3 | 4.901 | 6.897 | 1.111 |
1 | 裴建新.沥青裂缝自修复微胶囊的制备与表征[J]. 化工进展,2016, 35(9): 2898-2904. |
PEI Jianxin. Preparation and properties of self-healing microcapsule for asphalt crack[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2898-2904. | |
2 | 方伟锋, 沈本贤, 仝玉军, 等. LM-S沥青改性剂提高沥青混合料黏附性能的分子模拟计算及路用性能考察[J]. 化工进展,2018,37(10):3949-3957. |
FANG Weifeng, SHEN Benxian, TONG Yujun, et al. Molecular simulation of LM-S asphalt modifier to improve the adhesion of asphalt mixture and investigation of road performance[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3949-3957. | |
3 | 谭利鹏, 申峻, 王玉高, 等. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
TAN Lipeng, SHEN Jun, WANG Yugao, et al. Research progress on blending modification of coal tar pitch and petroleum asphalt[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. | |
4 | LU Pengzhen, MA Yiheng, YE Kai, et al. Analysis of high-temperature performance of polymer-modified asphalts through molecular dynamics simulations and experiments[J]. Construction and Building Materials, 2022, 350: 128903. |
5 | 谭忆秋, 李冠男, 单丽岩, 等. 沥青微观结构组成研究进展[J]. 交通运输工程学报, 2020, 20(6): 1-17. |
TAN Yiqiu, LI Guannan, SHAN Liyan, et al. Research progress of bitumen microstructures and components[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 1-17. | |
6 | CHEN Zixuan, PEI Jianzhong, LI Rui, et al. Performance characteristics of asphalt materials based on molecular dynamics simulation—A review[J]. Construction and Building Materials, 2018, 189: 695-710. |
7 | 郭鹏坤, 李攀, 常春, 等. 计算机模拟技术在生物质转化中的应用研究进展[J]. 化工进展, 2020, 39(8): 3027-3040. |
GUO Pengkun, LI Pan, CHANG Chun, et al. Advances in the application of computer simulation technology in biomass conversion[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3027-3040. | |
8 | 李光升, 解强, 张香兰, 等. 基于分子模拟的低温煤焦油中酚类化合物的溶解特性[J]. 化工进展, 2020, 39(1): 137-144. |
LI Guangsheng, XIE Qiang, ZHANG Xianglan, et al. Solubility of phenolic compounds in low temperature coal tar based on molecular simulation[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 137-144. | |
9 | 唐伯明, 丁勇杰, 朱洪洲, 等. 沥青分子聚集状态变化特征研究[J]. 中国公路学报, 2013, 26(3): 50-56, 76. |
TANG Boming, DING Yongjie, ZHU Hongzhou, et al. Study on agglomeration variation pattern of asphalt molecules[J]. China Journal of Highway and Transport, 2013, 26(3): 50-56, 76. | |
10 | 曹丽萍, 张晓亢, 杨晨, 等. 基于分子动力学的硅烷偶联剂对铁尾矿沥青混合料改性的机理[J]. 中南大学学报(自然科学版), 2021, 52(7): 2276-2286. |
CAO Liping, ZHANG Xiaokang, YANG Chen, et al. Modification mechanism of iron tailings asphalt mixture by silane coupling agents based on molecular dynamics[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2276-2286. | |
11 | LI Derek D, GREENFIELD Michael L. Chemical compositions of improved model asphalt systems for molecular simulations[J]. Fuel, 2014, 115: 347-356. |
12 | 郑仕跃, 邹卓民, 周权峰, 等. 基于12成分模型和分子动力学的沥青材料性质模拟研究[J]. 铁道科学与工程学报, 2022, 19(5): 1331-1338. |
ZHENG Shiyue, ZOU Zhuomin, ZHOU Quanfeng, et al. Simulation of asphalt properties based on 12-component model and molecular dynamics[J]. Journal of Railway Science and Engineering, 2022, 19(5): 1331-1338. | |
13 | XU Meng, YI Junyan, QI Pei, et al. Improved chemical system for molecular simulations of asphalt[J]. Energy & Fuels, 2019, 33(4): 3187-3198. |
14 | ARTOK Levent, SU Yan, HIROSE Yoshihisa, et al. Structure and reactivity of petroleum-derived asphaltene[J]. Energy & Fuels, 1999, 13(2): 287-296. |
15 | 栗启, 胡魁, 俞才华, 等. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 268-273. |
LI Qi, HU Kui, YU Caihua, et al. Molecular dynamics mechanism study of the interaction between polyethylene and asphalt[J]. Materials Reports, 2023, 37(5): 268-273. | |
16 | 苏曼曼, 司春棣, 张洪亮. 纳米ZnO改性沥青分子动力学模拟研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(11): 118-127. |
SU Manman, SI Chundi, ZHANG Hongliang. Molecular dynamics simulation of nano-ZnO modified asphalt[J]. Journal of Chongqing Jiaotong University (Natural Science), 2021, 40(11): 118-127. | |
17 | 王岚, 张乐, 刘旸. 老化前后沥青与胶粉相容性的分子动力学研究[J]. 建筑材料学报, 2019, 22(3): 474-479. |
WANG Lan, ZHANG Le, LIU Yang. Molecular dynamics study on compatibility of asphalt and rubber powders before and after aging[J]. Journal of Building Materials, 2019, 22(3): 474-479. | |
18 | HUANG Ting, ZHANG Zengping, WANG Li, et al. Study on the compatibility between polyurethane and asphalt based on experiment and molecular dynamics simulation[J]. Case Studies in Construction Materials, 2022, 17: e01424. |
19 | 崔亚楠, 李雪杉, 张淑艳. 基于分子动力学模拟的再生剂-老化沥青扩散机理[J]. 建筑材料学报, 2021, 24(5): 1105-1109. |
CUI Yanan, LI Xueshan, ZHANG Shuyan. Diffusion mechanism of regenerant aged asphalt based on molecular dynamics simulation[J]. Journal of Building Materials, 2021, 24(5): 1105-1109. | |
20 | 朱建勇. 沥青胶结料自愈合行为的分子动力学模拟[J]. 建筑材料学报, 2018, 21(3): 433-439. |
ZHU Jianyong. Molecular dynamic simulation of self-healing behavior of asphalt binder[J]. Journal of Building Materials, 2018, 21(3): 433-439. | |
21 | BHASIN Amit, BOMMAVARAM Rammohan, GREENFIELD Michael L, et al. Use of molecular dynamics to investigate self-healing mechanisms in asphalt binders[J]. Journal of Materials in Civil Engineering, 2011, 23(4): 485-492. |
22 | 邱延峻, 苏婷, 郑鹏飞, 等. 基于分子模拟的沥青胶结料物理老化机理研究[J]. 建筑材料学报, 2020, 23(6): 1464-1470. |
QIU Yanjun, SU Ting, ZHENG Pengfei, et al. Physical aging mechanism of asphalt binder based on molecular simulation[J]. Journal of Building Materials, 2020, 23(6): 1464-1470. | |
23 | XU Guangji, WANG Hao. Molecular dynamics study of oxidative aging effect on asphalt binder properties[J]. Fuel, 2017, 188: 1-10. |
24 | DING Yongjie, HUANG Baoshan, SHU Xiang, et al. Use of molecular dynamics to investigate diffusion between virgin and aged asphalt binders[J]. Fuel, 2016, 174: 267-273. |
25 | XU Guangji, WANG Hao. Molecular dynamics study of interfacial mechanical behavior between asphalt binder and mineral aggregate[J]. Construction and Building Materials, 2016, 121: 246-254. |
26 | LUO Daisong, GUO Meng, TAN Yiqiu. Molecular simulation of minerals-asphalt interfacial interaction[J]. Minerals, 2018, 8(5): 176. |
27 | WU Meng, XU Guangji, LUAN Yingcheng, et al. Molecular dynamics simulation on cohesion and adhesion properties of the emulsified cold recycled mixtures[J]. Construction and Building Materials, 2022, 333: 127403. |
28 | 杨健, 郭乃胜, 郭晓阳, 等. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(S2): 138-144. |
YANG Jian, GUO Naisheng, GUO Xiaoyang, et al. Study on interfacial adhesion between foamed asphalt-aggregate based on molecular dynamics[J]. Materials Reports, 2021, 35(S2): 138-144. | |
29 | DUAN Shaochan, HU Jianying, MA Tao, et al. Anti-icing mechanism of an environmentally sustainable tenebrio molitor antifreeze protein modified asphalt binder via molecular dynamics simulations[J]. Construction and Building Materials, 2022, 360: 129580. |
30 | ZHANG Zengping, HUANG Ting, SUN Jia, et al. Laboratory study and molecular dynamics simulation of high- and low-temperature properties of polyurethane-modified asphalt[J]. Journal of Materials in Civil Engineering, 2023, 35(8): 04023144. |
31 | XU Jiayun, MA Biao, MAO Weijie, et al. Review of interfacial adhesion between asphalt and aggregate based on molecular dynamics[J]. Construction and Building Materials, 2023, 362: 129642. |
32 | SUN Guoqing, ZHANG Jiupeng, CHEN Zixuan, et al. Interfacial performance of asphalt-aggregate system under different conditions based on molecular dynamics simulation[J]. Journal of Materials in Civil Engineering, 2023, 35(6): 04023116. |
33 | JENNINGS P W, PRIBANIC J, DESANDO M, et al. Binder characterization and evaluation by nuclear magnetic resonance spectroscopy[R]. Strategic highway research program, National Research Council, Washington, DC, 1993. |
34 | QU Xin, WANG Dawei, WANG Linbing, et al. The state-of-the-art review on molecular dynamics simulation of asphalt binder[J]. Advances in Civil Engineering, 2018, 2018: 4546191. |
35 | DING Yongjie, TANG Boming, ZHANG Yuzhen, et al. Molecular dynamics simulation to investigate the influence of SBS on molecular agglomeration behavior of asphalt[J]. Journal of Materials in Civil Engineering, 2015, 27(8): C4014004. |
36 | GROENZIN Henning, MULLINS Oliver C. Molecular size and structure of asphaltenes from various sources[J]. Energy & Fuels, 2000, 14(3): 677-684. |
37 | ZHANG Liqun, GREENFIELD Michael L. Analyzing properties of model asphalts using molecular simulation[J]. Energy & Fuels, 2007, 21(3): 1712-1716. |
38 | ZHANG Liqun, GREENFIELD Michael L. Effects of polymer modification on properties and microstructure of model asphalt systems[J]. Energy & Fuels, 2008, 22(5): 3363-3375. |
39 | GUO Fucheng, ZHANG Jiupeng, PEI Jianzhong, et al. Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(2): 435-445. |
40 | 董喜贵, 雷群芳, 俞庆森. 石油沥青质的NMR测定及其模型分子推测[J]. 燃料化学学报, 2004, 32(6): 668-672. |
DONG Xigui, LEI Qunfang, YU Qingsen. NMR determination of petroleum asphaltenes and their model molecules evaluation[J]. Journal of Fuel Chemistry and Technology, 2004, 32(6): 668-672. | |
41 | 齐邦峰, 曹祖宾, 陈立仁, 等. 紫外吸收光谱研究胜利渣油胶质、沥青质结构特性[J]. 石油化工高等学校学报, 2001, 14(3): 14-17. |
QI Bangfeng, CAO Zubin, CHEN Liren, et al. Study on structure of resins and asphaltenes with U.V. absorption spectrum[J]. Journal of Petrochemical Universities, 2001, 14(3): 14-17. | |
42 | 陈龙, 何兆益, 陈宏斌, 等. 新-旧沥青界面再生流变特征及分子动力学模拟研究[J]. 中国公路学报, 2019, 32(3): 25-33. |
CHEN Long, HE Zhaoyi, CHEN Hongbin, et al. Rheological characteristics and molecular dynamics simulation of interface regeneration between virgin and aged asphalts[J]. China Journal of Highway and Transport, 2019, 32(3): 25-33. | |
43 | QU Xin, LIU Quan, GUO Meng, et al. Study on the effect of aging on physical properties of asphalt binder from a microscale perspective[J]. Construction and Building Materials, 2018, 187: 718-729. |
44 | 屈鑫, 丁鹤洋, 王超, 等. 基于分子动力学模拟技术的生物质油改性沥青微观性能研究[J]. 材料导报, 2022, 36(19): 124-129. |
QU Xin, DING Heyang, WANG Chao, et al. Research on micro properties of bio-oil modified asphalt based on molecular dynamics simulation technique[J]. Materials Reports, 2022, 36(19): 124-129. | |
45 | 张英男, 李汝传, 于顺昌, 等. 基于深层原油物性模拟的分子力场优选及验证[J]. 中国石油大学学报(自然科学版), 2020, 44(6): 162-169. |
ZHANG Yingnan, LI Ruchuan, YU Shunchang, et al. Screening and verification of molecular force field based on physical property simulation of deep oil[J]. Journal of China University of Petroleum (Edition of Natural Science), 2020, 44(6): 162-169. | |
46 | 谢士杰. 聚合物玻璃化转变行为的分子动力学模拟研究[D]. 长春: 吉林大学, 2015. |
XIE Shijie. Molecular dynamics simulation study on the glass transition behavior of polymers[D]. Changchun: Jilin University, 2015. | |
47 | KANG Yang, ZHOU Dunhong, WU Qiang, et al. Molecular dynamics study on the glass forming process of asphalt[J]. Construction and Building Materials, 2019, 214: 430-440. |
48 | SUN Daquan, SUN Guoqiang, ZHU Xingyi, et al. Intrinsic temperature sensitive self-healing character of asphalt binders based on molecular dynamics simulations[J]. Fuel, 2018, 211: 609-620. |
49 | XU Guangji, WANG Hao. Study of cohesion and adhesion properties of asphalt concrete with molecular dynamics simulation[J]. Computational Materials Science, 2016, 112: 161-169. |
50 | CUI Bingyan, WANG Hao, GU Xingyu, et al. Study of the inter-diffusion characteristics and cracking resistance of virgin-aged asphalt binders using molecular dynamics simulation[J]. Construction and Building Materials, 2022, 351: 128968. |
51 | DU Jiegui, JIN Yuye, HOU Shuguang, et al. Effect of component characteristics on mechanical properties of asphalt: A molecular dynamics study[J]. Case Studies in Construction Materials, 2023, 18: e02007. |
52 | WANG Jiaqing, LI Qiang, LU Yang, et al. Effect of Waste-Oil regenerant on diffusion and fusion behaviors of asphalt recycling using molecular dynamics simulation[J]. Construction and Building Materials, 2022, 343: 128043. |
53 | YU Huanan, GE Jinguo, QIAN Guoping, et al. Evaluation on the rejuvenation and diffusion characteristics of waste cooking oil on aged SBS asphalt based on molecular dynamics method[J]. Journal of Cleaner Production, 2023, 406: 136998. |
54 | HOU Yue, WANG Linbing, WANG Dawei, et al. Characterization of bitumen micro-mechanical behaviors using AFM, phase dynamics theory and MD simulation[J]. Materials, 2017, 10(2): 208. |
55 | SULTANA Sharmin, BHASIN Amit. Effect of chemical composition on rheology and mechanical properties of asphalt binder[J]. Construction and Building Materials, 2014, 72: 293-300. |
56 | HOU Yue, WANG Linbing, WANG Dawei, et al. Using a molecular dynamics simulation to investigate asphalt nano-cracking under external loading conditions[J]. Applied Sciences, 2017, 7(8): 770. |
57 | XU Haoping, XU Wenyuan, ZHENG Xuewen, et al. A multistage analysis of asphalt binder nanocrack generation and self-healing behavior based on molecular dynamics[J]. Polymers, 2022, 14(17): 3581. |
58 | BEHNOOD Ali, MODIRI GHAREHVERAN Mahsa. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. European Polymer Journal, 2019, 112: 766-791. |
59 | SU Manman, SI Chundi, ZHANG Zengping, et al. Molecular dynamics study on influence of Nano-ZnO/SBS on physical properties and molecular structure of asphalt binder[J]. Fuel, 2020, 263: 116777. |
60 | GUO Fucheng, ZHANG Jiupeng, PEI Jianzhong, et al. Study on the mechanical properties of rubber asphalt by molecular dynamics simulation[J]. Journal of Molecular Modeling, 2019, 25(12): 365. |
61 | 周昆, 黄君, 邓雅丹, 等. 石墨烯改性沥青界面力学性能的分子动力学模拟[J]. 功能材料, 2021, 52(12): 12129-12136. |
ZHOU Kun, HUANG Jun, DENG Yadan, et al. Molecular dynamics simulation of the interface mechanical properties of graphene modified asphalt[J]. Journal of Functional Materials, 2021, 52(12): 12129-12136. | |
62 | 赵毅, 杨臻, 张新为, 等. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
ZHAO Yi, YANG Zhen, ZHANG Xinwei, et al. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. | |
63 | SUN Daquan, LIN Tianban, ZHU Xingyi, et al. Indices for self-healing performance assessments based on molecular dynamics simulation of asphalt binders[J]. Computational Materials Science, 2016, 114: 86-93. |
64 | HU Dongliang, PEI Jianzhong, LI Rui, et al. Using thermodynamic parameters to study self-healing and interface properties of crumb rubber modified asphalt based on molecular dynamics simulation[J]. Frontiers of Structural and Civil Engineering, 2020, 14(1): 109-122. |
65 | HE Liangju, ZHENG Yufeng, ALEXIADIS Alessio, et al. Research on the self-healing behavior of asphalt mixed with healing agents based on molecular dynamics method[J]. Construction and Building Materials, 2021, 295: 123430. |
66 | 徐宁, 汪海年, 陈玉, 等. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 112-119. |
XU Ning, WANG Hainian, CHEN Yu, et al. Research on the self-healing properties of waste edible oil modified asphalt based on molecular dynamics method[J]. Materials Reports, 2023, 37(15): 112-119. | |
67 | GONG Yan, XU Jian, YAN Erhu, et al. The self-healing performance of carbon-based nanomaterials modified asphalt binders based on molecular dynamics simulations[J]. Frontiers in Materials, 2021, 7: 599551. |
68 | XIANG Haonan, HE Zhaoyi, TANG Haojie, et al. Healing behavior of thermo-oxygen aged asphalt based on molecular dynamics simulations[J]. Construction and Building Materials, 2022, 349: 128740. |
69 | ZAUMANIS Martins, MALLICK Rajib B. Review of very high-content reclaimed asphalt use in plant-produced pavements: State of the art[J]. International Journal of Pavement Engineering, 2015, 16(1): 39-55. |
70 | XU Meng, YI Junyan, FENG Decheng, et al. Diffusion characteristics of asphalt rejuvenators based on molecular dynamics simulation[J]. International Journal of Pavement Engineering, 2019, 20(5): 615-627. |
71 | GAO Yangming, ZHANG Yuqing, ZHANG Chao, et al. Quantifying oxygen diffusion in bitumen films using molecular dynamics simulations[J]. Construction and Building Materials, 2022, 331: 127325. |
72 | GAO Mingxing, FAN Conghao, CHEN Xinxin, et al. Study on ultraviolet aging performance of composite modified asphalt based on rheological properties and molecular dynamics simulation[J]. Advances in Materials Science and Engineering, 2022, 2022: 7894190. |
73 | PENG Chao, LU Li, YOU Zhanping, et al. Influence of waste polyethylene on the performances of asphalt before and after oxidative aging based on the molecular dynamics simulation[J]. Journal of Materials in Civil Engineering, 2022, 34(10): 04022274. |
74 | PENG Chao, GUO Chong, YOU Zhanping, et al. The effect of waste engine oil and waste polyethylene on UV aging resistance of asphalt[J]. Polymers, 2020, 12(3): 602. |
75 | 曹丽萍, 谭忆秋, 董泽蛟, 等. 应用玻璃化转变温度评价SBS改性沥青低温性能[J]. 中国公路学报, 2006, 19(2): 1-6. |
CAO Liping, TAN Yiqiu, DONG Zejiao, et al. Evaluation for low temperature performance of SBS modified asphalt using glass transition temperature[J]. China Journal of Highway and Transport, 2006, 19(2): 1-6. | |
76 | LIU Shuang, QI Xiaofei, SHAN Liyan. Effect of molecular structure on low-temperature properties of bitumen based on molecular dynamics[J]. Construction and Building Materials, 2022, 319: 126029. |
77 | ZHAO Liyan, CHOI Phillip. Study of the correctness of the solubility parameters obtained from indirect methods by molecular dynamics simulation[J]. Polymer, 2004, 45(4): 1349-1356. |
78 | GAO Yingli, TIAN Weiwei, LI Yuelin, et al. Study on compatibility mechanism of plasticizer and asphalt based on molecular dynamics[J]. Materials & Design, 2023, 228: 111827. |
79 | HAN Yajin, CUI Bingyan, TIAN Jiahao, et al. Evaluating the effects of styrene-butadiene rubber (SBR) and polyphosphoric acid (PPA) on asphalt adhesion performance[J]. Construction and Building Materials, 2022, 321: 126028. |
80 | 曹雪娟, 苏玥, 邓梅. 基于分子动力学模拟的聚合物改性剂与沥青相互作用研究[J]. 化工新型材料, 2021, 49(9): 234-239. |
CAO Xuejuan, SU Yue, DENG Mei. Investigation on interaction between polymer modifier and asphalt based on molecular dynamics simulation[J]. New Chemical Materials, 2021, 49(9): 234-239. | |
81 | GUO Fucheng, ZHANG Jiupeng, PEI Jianzhong, et al. Investigating the interaction behavior between asphalt binder and rubber in rubber asphalt by molecular dynamics simulation[J]. Construction and Building Materials, 2020, 252: 118956. |
82 | 王岚, 张乐, 刘旸. 基于分子动力学的胶粉改性沥青中胶粉与沥青相容性研究[J]. 建筑材料学报, 2018, 21(4): 689-694. |
WANG Lan, ZHANG Le, LIU Yang. Compatibility of rubber powder and asphalt in rubber powder modified asphalt by molecular dynamics[J]. Journal of Building Materials, 2018, 21(4): 689-694. | |
83 | JIAO Bozong, PAN Baofeng, CHE Tiankai. Evaluating impacts of desulfurization and depolymerization on thermodynamics properties of crumb rubber modified asphalt through molecular dynamics simulation[J]. Construction and Building Materials, 2022, 323: 126360. |
84 | YU Caihua, HU Kui, YANG Qilin, et al. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations[J]. Polymers, 2021, 13(10): 1658. |
85 | HU Kui, YU Caihua, YANG Qilin, et al. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: A new observation from molecular dynamics simulation[J]. Construction and Building Materials, 2022, 320: 126263. |
86 | ZENG Qing, LIU Yaru, LIU Qicheng, et al. Research on the synergistic modification effect and the interface mechanism of GO/SBS compound-modified asphalt based on experiments and molecular simulations[J]. Scientific Reports, 2023, 13: 3496. |
87 | 徐宁, 汪海年, 陈玉, 等. 基于分子动力学的生物沥青相容性研究[J]. 华南理工大学学报(自然科学版), 2022, 50(5): 65-72. |
XU Ning, WANG Hainian, CHEN Yu, et al. Research on the compatibility of bio-asphalt based on molecular dynamics[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(5): 65-72. | |
88 | CHEN Wuxing, CHEN Shuang, ZHENG Chuanfeng. Analysis of micromechanical properties of algae bio-based bio-asphalt-mineral interface based on molecular simulation technology[J]. Construction and Building Materials, 2021, 306: 124888. |
89 | LIU Jinzhou, YU Bin, HONG Qianzhe. Molecular dynamics simulation of distribution and adhesion of asphalt components on steel slag[J]. Construction and Building Materials, 2020, 255: 119332. |
90 | LU Yang, WANG Linbing. Nanoscale modelling of mechanical properties of asphalt–aggregate interface under tensile loading[J]. International Journal of Pavement Engineering, 2010, 11(5): 393-401. |
91 | 潘伶, 张晋铭, 吕志田, 等. 基于分子动力学两集料间沥青的拉伸黏附机理[J]. 建筑材料学报, 2021, 24(5): 1054-1059, 1122. |
PAN Ling, ZHANG Jinming, Zhitian LYU, et al. Tensile adhesion mechanism of asphalt confined in two aggregates based on molecular dynamics[J]. Journal of Building Materials, 2021, 24(5): 1054-1059, 1122. | |
92 | CUI Bingyan, WANG Hao. Molecular interaction of Asphalt-Aggregate interface modified by silane coupling agents at dry and wet conditions[J]. Applied Surface Science, 2022, 572: 151365. |
93 | CUI Wentian, HUANG Wenke, HASSAN Hafiz, et al. Study on the interfacial contact behavior of carbon nanotubes and asphalt binders and adhesion energy of modified asphalt on aggregate surface by using molecular dynamics simulation[J]. Construction and Building Materials, 2022, 316: 125849. |
94 | SUN Guoqing, NIU Zhenxing, ZHANG Jiupeng, et al. Impacts of asphalt and mineral types on interfacial behaviors: A molecular dynamics study[J]. Case Studies in Construction Materials, 2022, 17: e01581. |
95 | GUO Fucheng, PEI Jianzhong, HUANG Guojing, et al. Investigation of the adhesion and debonding behaviors of rubber asphalt and aggregates using molecular dynamics simulation[J]. Construction and Building Materials, 2023, 371: 130781. |
96 | WANG Hao, LIN Enqiang, XU Guangji. Molecular dynamics simulation of asphalt-aggregate interface adhesion strength with moisture effect[J]. International Journal of Pavement Engineering, 2017, 18(5): 414-423. |
97 | CHEN Zhuo, YI Junyan, ZHAO Han, et al. Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation[J]. Construction and Building Materials, 2021, 269: 121324. |
98 | GONG Yan, XU Jian, YAN Erhu. Intrinsic temperature and moisture sensitive adhesion characters of asphalt-aggregate interface based on molecular dynamics simulations[J]. Construction and Building Materials, 2021, 292: 123462. |
99 | LU Yang, WANG Linbing. Atomistic modelling of moisture sensitivity: A damage mechanisms study of asphalt concrete interfaces[J]. Road Materials and Pavement Design, 2017, 18(sup3): 200-214. |
100 | YAO Hui, DAI Qingli, YOU Zhanping. Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures[J]. Construction and Building Materials,2015, 101: 536-547. |
101 | WANG Lan, LIU Yang, ZHANG Le. A multiscale study of moisture influence on the crumb rubber asphalt mixture interface[J]. Applied Sciences, 2022, 12(14): 6940. |
102 | LI Qiang, WANG Jiaqing, LU Yang, et al. Effect of dynamic water pressure on the adhesion behavior of recycled asphalt-aggregate interface by molecular dynamics method[J]. Construction and Building Materials, 2023, 382: 131296. |
[1] | LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933. |
[2] | ZHOU Yihuan, XIE Qiang, ZHOU Hongyang, LIANG Dingcheng, LIU Jinchang. Modeling of porous carbon materials based on molecular simulation: State-of-the art [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1535-1551. |
[3] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[4] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[5] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[6] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[7] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[8] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[9] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[10] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
[11] | LI Zhi, PEI Jialing, LI Nan, KAN Jingyu, GUO Xuqiang, LIU Bei, CHEN Guangjin. Simulation on the micro formation process of methane hydrate in the fixed bed filled with wet materials [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5689-5699. |
[12] | LI Jingjing, ZHAO Yao, XU Fengchi, LI Kangjian. Heavy metal leaching characteristics of porous asphalt mixture containing MSWI-BAA under different stormwater runoff flow rates [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5520-5530. |
[13] | SONG Chao, YE Xuemin, LI Chunxi. Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375. |
[14] | LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. |
[15] | WANG Qiaoyi, LU Shaofeng, SHI Wenzhao, HONG Xun, YAO Dongxia, ZHANG Ling. Preparation and properties of polyurea/polyurethane shell microencapsulated essence by interfacial polymerization [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4432-4440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |