Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 4118-4127.DOI: 10.16085/j.issn.1000-6613.2023-0935
• Resources and environmental engineering • Previous Articles
YANG Xin1,2(), ZHONG Chengwei1, YANG Zhishan1,3, ZHU Weiwei1, WANG Wenhao1,2, YU Jiang1,2,3()
Received:
2023-06-06
Revised:
2023-07-13
Online:
2024-08-14
Published:
2024-07-10
Contact:
YU Jiang
杨昕1,2(), 钟承韡1, 杨志山1,3, 朱韦韦1, 王文浩1,2, 余江1,2,3()
通讯作者:
余江
作者简介:
杨昕(2000—),女,硕士研究生,研究方向为土壤污染治理与修复技术。E-mail:yyyxin@stu.scu.edu.cn。
基金资助:
CLC Number:
YANG Xin, ZHONG Chengwei, YANG Zhishan, ZHU Weiwei, WANG Wenhao, YU Jiang. Catalytic remediation of polycyclic aromatic hydrocarbons contaminated soil by synthetic siderite and its derivatives[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4118-4127.
杨昕, 钟承韡, 杨志山, 朱韦韦, 王文浩, 余江. 人工仿真菱铁矿及其衍生材料催化修复PAHs污染土壤[J]. 化工进展, 2024, 43(7): 4118-4127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0935
项目 | 组别 | 氧化剂 | 浓度 /mmol·g-1 | 用量 | 单价 /CNY·g-1 |
---|---|---|---|---|---|
CK | 对照组 | 过硫酸钠 | 0.5~1.0 | 0.119~0.238g·g-1 | 0.025~0.05 |
1 | 等浓度组 | 30%过氧化氢 | 0.5~1.0 | 0.05~0.1mL·g-1 | 0.005~0.01 |
2 | 等单价组 | 30%过氧化氢 | 2.5~5.0 | 0.25~0.5mL·g-1 | 0.025~0.05 |
项目 | 组别 | 氧化剂 | 浓度 /mmol·g-1 | 用量 | 单价 /CNY·g-1 |
---|---|---|---|---|---|
CK | 对照组 | 过硫酸钠 | 0.5~1.0 | 0.119~0.238g·g-1 | 0.025~0.05 |
1 | 等浓度组 | 30%过氧化氢 | 0.5~1.0 | 0.05~0.1mL·g-1 | 0.005~0.01 |
2 | 等单价组 | 30%过氧化氢 | 2.5~5.0 | 0.25~0.5mL·g-1 | 0.025~0.05 |
项目 | 土样 /g | 催化剂 /mg·g-1 | 氧化剂 /mmol·g-1 | 温度 /℃ | 初始pH | 土水比 | 时间 /min |
---|---|---|---|---|---|---|---|
NFC | 10 | 50 | 1.0 | 45 | 本底值 | 1∶2 | 180 |
SFC | 10 | 50 | 1.0 | 45 | 本底值 | 1∶2 | 180 |
FFC | 10 | 50 | 0.5 | 45 | 本底值 | 1∶2 | 180 |
项目 | 土样 /g | 催化剂 /mg·g-1 | 氧化剂 /mmol·g-1 | 温度 /℃ | 初始pH | 土水比 | 时间 /min |
---|---|---|---|---|---|---|---|
NFC | 10 | 50 | 1.0 | 45 | 本底值 | 1∶2 | 180 |
SFC | 10 | 50 | 1.0 | 45 | 本底值 | 1∶2 | 180 |
FFC | 10 | 50 | 0.5 | 45 | 本底值 | 1∶2 | 180 |
pH | 含水率 /% | 湿密度 /g·cm-3 | 干密度 /g·cm-3 | 孔隙比 | 饱和度 /% | 土粒占比 /% |
---|---|---|---|---|---|---|
8.9 | 13.3 | 2.11 | 1.86 | 0.44 | 81.1 | 2.6 |
pH | 含水率 /% | 湿密度 /g·cm-3 | 干密度 /g·cm-3 | 孔隙比 | 饱和度 /% | 土粒占比 /% |
---|---|---|---|---|---|---|
8.9 | 13.3 | 2.11 | 1.86 | 0.44 | 81.1 | 2.6 |
PAHs | 污染物 | 环数 | 浓度/mg·kg-1 | 占比/% | 一类用地筛选值/mg·kg-1 | 超标倍数 |
---|---|---|---|---|---|---|
L-PAHs | 萘(ANP) | 2 | 1.12 | 0.55 | 25 | — |
苊烯(ANY) | 3 | 1.37 | 0.67 | — | — | |
苊(ANA) | 3 | 未检出 | 0 | — | — | |
芴(FLU) | 3 | 1.15 | 0.57 | — | — | |
菲(PHE) | 3 | 20.16 | 9.91 | — | — | |
蒽(ANT) | 3 | 8.40 | 4.13 | — | — | |
M-PAHs | 荧蒽(FLT) | 4 | 25.24 | 12.40 | — | — |
芘(PYR) | 4 | 25.11 | 12.34 | — | — | |
苯并(a)蒽(BaA) | 4 | 19.75 | 9.71 | 5.5 | 3.59 | |
䓛(CHR) | 4 | 14.56 | 7.16 | 490 | — | |
H-PAHs | 苯并(b)荧蒽(BaE) | 5 | 22.71 | 11.16 | 5.5 | 4.13 |
苯并(k)荧蒽(BKF) | 5 | 15.61 | 7.67 | 55 | — | |
苯并(a)芘(BaP) | 5 | 22.84 | 11.23 | 0.55 | 41.53 | |
茚并(1.2.3-c,d)芘(IPY) | 6 | 12.34 | 6.06 | 5.5 | 2.24 | |
二苯并(a,h)蒽(DBA) | 6 | 1.99 | 0.98 | 0.55 | 3.62 | |
苯并(g,h,i)苝(BPE) | 6 | 11.12 | 5.47 | 5.5 | — | |
TPAH | 203.47 | 100 |
PAHs | 污染物 | 环数 | 浓度/mg·kg-1 | 占比/% | 一类用地筛选值/mg·kg-1 | 超标倍数 |
---|---|---|---|---|---|---|
L-PAHs | 萘(ANP) | 2 | 1.12 | 0.55 | 25 | — |
苊烯(ANY) | 3 | 1.37 | 0.67 | — | — | |
苊(ANA) | 3 | 未检出 | 0 | — | — | |
芴(FLU) | 3 | 1.15 | 0.57 | — | — | |
菲(PHE) | 3 | 20.16 | 9.91 | — | — | |
蒽(ANT) | 3 | 8.40 | 4.13 | — | — | |
M-PAHs | 荧蒽(FLT) | 4 | 25.24 | 12.40 | — | — |
芘(PYR) | 4 | 25.11 | 12.34 | — | — | |
苯并(a)蒽(BaA) | 4 | 19.75 | 9.71 | 5.5 | 3.59 | |
䓛(CHR) | 4 | 14.56 | 7.16 | 490 | — | |
H-PAHs | 苯并(b)荧蒽(BaE) | 5 | 22.71 | 11.16 | 5.5 | 4.13 |
苯并(k)荧蒽(BKF) | 5 | 15.61 | 7.67 | 55 | — | |
苯并(a)芘(BaP) | 5 | 22.84 | 11.23 | 0.55 | 41.53 | |
茚并(1.2.3-c,d)芘(IPY) | 6 | 12.34 | 6.06 | 5.5 | 2.24 | |
二苯并(a,h)蒽(DBA) | 6 | 1.99 | 0.98 | 0.55 | 3.62 | |
苯并(g,h,i)苝(BPE) | 6 | 11.12 | 5.47 | 5.5 | — | |
TPAH | 203.47 | 100 |
PAHs | 初始pH | 土水比 | 反应时间 | |||
---|---|---|---|---|---|---|
R值 | P值 | R值 | P值 | R值 | P值 | |
TPAH | -0.214 | 0.231 | 0.172 | 0.338 | 0.700② | 0.000 |
L-PAHs | -0.096 | 0.596 | 0.344 | 0.050 | 0.641② | 0.000 |
M-PAHs | -0.130 | 0.472 | 0.155 | 0.390 | 0.588② | 0.000 |
H-PAHs | -0.266 | 0.134 | 0.353 | 0.044① | 0.463② | 0.007 |
PAHs | 初始pH | 土水比 | 反应时间 | |||
---|---|---|---|---|---|---|
R值 | P值 | R值 | P值 | R值 | P值 | |
TPAH | -0.214 | 0.231 | 0.172 | 0.338 | 0.700② | 0.000 |
L-PAHs | -0.096 | 0.596 | 0.344 | 0.050 | 0.641② | 0.000 |
M-PAHs | -0.130 | 0.472 | 0.155 | 0.390 | 0.588② | 0.000 |
H-PAHs | -0.266 | 0.134 | 0.353 | 0.044① | 0.463② | 0.007 |
PAHs | TPAH | L-PAHs | M-PAHs | H-PAHs | ||||
---|---|---|---|---|---|---|---|---|
R值 | P值 | R值 | P值 | R值 | P值 | R值 | P值 | |
TPAH | 1 | — | 0.748② | 0.000 | 0.790② | 0.000 | 0.854② | 0.000 |
L-PAHs | 0.748② | 0.000 | 1 | — | 0.333 | 0.059 | 0.660② | 0.000 |
M-PAHs | 0.790② | 0.000 | 0.333 | 0.059 | 1 | — | 0.433① | 0.012 |
H-PAHs | 0.854② | 0.000 | 0.660② | 0.000 | 0.433① | 0.012 | 1 | — |
PAHs | TPAH | L-PAHs | M-PAHs | H-PAHs | ||||
---|---|---|---|---|---|---|---|---|
R值 | P值 | R值 | P值 | R值 | P值 | R值 | P值 | |
TPAH | 1 | — | 0.748② | 0.000 | 0.790② | 0.000 | 0.854② | 0.000 |
L-PAHs | 0.748② | 0.000 | 1 | — | 0.333 | 0.059 | 0.660② | 0.000 |
M-PAHs | 0.790② | 0.000 | 0.333 | 0.059 | 1 | — | 0.433① | 0.012 |
H-PAHs | 0.854② | 0.000 | 0.660② | 0.000 | 0.433① | 0.012 | 1 | — |
1 | 余湛, 郑阳, 胡佳晨, 等. 典型氯代烃污染场地地下水化学氧化修复实验分析[J]. 环境保护科学, 2019, 45(5): 122-126. |
YU Zhan, ZHENG Yang, HU Jiachen, et al. Chemical oxidation remediation analysis of groundwater in a typical chlorinated hydrocarbons contaminated site with a lab-scale[J]. Environmental Protection Science, 2019, 45(5): 122-126. | |
2 | 廖长君, 杨建建, 赵志勇, 等. 化工场地氯代烃污染地下水氧化修复研究[J]. 广东化工, 2020, 47(4): 57-60, 44. |
LIAO Changjun, YANG Jianjian, ZHAO Zhiyong, et al. Study on remediation of groundwater polluted by chlorinated hydrocarbons by alkali activated sodium persulfate and modified Fenton oxidation system[J]. Guangdong Chemical Industry, 2020, 47(4): 57-60, 44. | |
3 | 王甫洋, 田珺, 夏晶, 等. 南京某化工企业搬迁场地土壤有机污染调查及健康风险评价研究[J]. 四川环境, 2020, 39(1): 105-111. |
WANG Fuyang, TIAN Jun, XIA Jing, et al. Pollution investigation and health risk assessment of organic pollutants in the soil of a chemical factory in Nanjing[J]. Sichuan Environment, 2020, 39(1): 105-111. | |
4 | 周芷嫣, 张秀秀, 王飞, 等. 不同土地利用类型土壤多环芳烃的纵向污染特征及来源解析[J]. 环境科学, 2023, 44(3): 1583-1592. |
ZHOU Zhiyan, ZHANG Xiuxiu, WANG Fei, et al. Vertical pollution characteristics and source analysis of soil PAHs in different land use types[J]. Environmental Science, 2023, 44(3): 1583-1592. | |
5 | 郭建, 罗孝俊, 管克兰, 等. 石化工业园员工PAHs的皮肤暴露及健康风险[J]. 中国环境科学, 2022, 42(11): 5427-5435. |
GUO Jian, LUO Xiaojun, GUAN Kelan, et al. A study on employees' skin exposure to polycyclic aromatic hydrocarbons and health risk in a petrochemical industrial park[J]. China Environmental Science, 2022, 42(11): 5427-5435. | |
6 | 李伟, 王华伟, 孟祥宇, 等. 3种氧化剂对焦化场地多环芳烃的修复效果与土著微生物的响应关系[J]. 环境科学, 2023, 44(12): 6992-7003. |
LI Wei, WANG Huawei, MENG Xiangyu, et al. Remediation of three oxidants on polycyclic aromatic hydrocarbons in coking contaminated soil and its response to indigenous microorganisms[J]. Environmental Science, 2023, 44(12): 6992-7003. | |
7 | 孙勇, 张祥, 吕树光. 基于过硫酸盐的多环芳烃污染场地原位修复技术研究进展[J]. 环境污染与防治, 2023, 45(1): 105-112, 121. |
SUN Yong, ZHANG Xiang, Shuguang LYU. Research progress of in situ remediation technology based on persulfate for polycyclic aromatic hydrocarbons contaminated site[J]. Environmental Pollution & Control, 2023, 45(1): 105-112, 121. | |
8 | 韩跃鸣, 代朝猛, 段艳平, 等. 含过氧键化合物在土壤及地下水PAHs污染修复中的应用进展[J]. 材料导报, 2024, 38(6): 254-260. |
Yueming HAH, DAI Chaomeng, DUAN Yanping, et al. Application progress of peroxybond compounds in remediation of PAHs pollution in soil and groundwater[J]. Materials Reports, 2024, 38(6): 254-260. | |
9 | FU Caixia, YAN Miao, WANG Zhuoyue, et al. New insights into the degradation and detoxification of methylene blue using heterogeneous-Fenton catalyzed by sustainable siderite[J]. Environmental Research, 2023, 216: 114819. |
10 | SONG Wei, LI Ji, ZHANG Xiaolei, et al. A feasible approach for azo-dye methyl orange degradation in siderite/H2O2 assisted by persulfate: Optimization using response surface methodology and pathway[J]. Journal of Environmental Management, 2022, 308: 114397. |
11 | FENG Yong, WU Deli, LI Hailong, et al. Activation of persulfates using siderite as a source of ferrous ions: Sulfate radical production, stoichiometric efficiency, and implications[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3624-3631. |
12 | SUN Fuwei, CHEN Tianhu, LIU Haibo, et al. The pH-dependent degradation of sulfadiazine using natural siderite activating PDS: The role of singlet oxygen[J]. Science of the Total Environment, 2021, 784: 147117. |
13 | SUN Fuwei, LIU Haibo, WANG Hanlin, et al. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9[J]. Science of the Total Environment, 2020, 698: 134293. |
14 | YAN Ni, LIU Fei, HUANG Weiying. Interaction of oxidants in siderite catalyzed hydrogen peroxide and persulfate system using trichloroethylene as a target contaminant[J]. Chemical Engineering Journal, 2013, 219: 149-154. |
15 | 李梦姣, 刘菲, 陈鸿汉, 等. 菱铁矿催化过氧化氢-过硫酸钠修复地下水中1,2-二氯乙烷污染[J]. 环境工程学报, 2014, 8(4): 1434-1438. |
LI Mengjiao, LIU Fei, CHEN Honghan, et al. Removal of 1,2 - dichloroethane in groundwater with siderite-catalyzed hydrogen peroxide and persulfate system[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1434-1438. | |
16 | ZHONG Chengwei, JIANG Yinying, LIU Quanfeng, et al. Natural siderite derivatives activated peroxydisulfate toward oxidation of organic contaminant: A green soil remediation strategy[J]. Journal of Environmental Sciences, 2023, 127: 615-627. |
17 | GAO Yue, XUE Yanan, JI Jing, et al. Remediation of industrial site soil contaminated with PAHs using stage persulfate oxidation activated by Fe2+ chelated with sodium citrate[J]. Chemosphere, 2023, 313: 137450. |
18 | KIM Cheolyong, Jun-Young AHN, KIM Tae Yoo, et al. Activation of persulfate by nanosized zero-valent iron (NZVI): Mechanisms and transformation products of NZVI[J]. Environmental Science & Technology, 2018, 52(6): 3625-3633. |
19 | 冉宗信, 陈靖宇, 王亚婷, 等. 典型工业区土壤多环芳烃污染特征及影响因素[J]. 环境科学, 2019, 40(10): 4594-4603. |
RAN Zongxin, CHEN Jingyu, WANG Yating, et al. Characteristics and influencing factors of polycyclic aromatic hydrocarbons in surface soils from typical industrial areas of Chengdu[J]. Environmental Science, 2019, 40(10): 4594-4603. | |
20 | 周佳靖, 柳修楚, 郭瑾, 等. 纳米氧化铁与氧化剂对多环芳烃污染农田土壤修复和蔬菜健康风险的影响[J]. 环境污染与防治, 2021, 43(2): 223-228. |
ZHOU Jiajing, LIU Xiuchu, GUO Jin, et al. Effects of nano-Fe2O3 and oxidants on soil remediation and health risk of polycyclic aromatic hydrocarbon in vegetable from contaminated farmland[J]. Environmental Pollution & Control, 2021, 43(2): 223-228. | |
21 | 翟雄. 烯烃的过氧化氢氧化研究[D]. 大连: 大连理工大学, 2005. |
ZHAI Xiong. Olefin oxidation with hydrogen peroxide[D]. Dalian: Dalian University of Technology, 2005. | |
22 | 张维国. 稠环芳烃分子结构对其碳化产物结构的影响[D]. 北京: 北京化工大学, 2015. |
ZHANG Weiguo. Influence of molecular structure polycyclic aromatic hydrocarbons on the carbonized product[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
23 | 王春艳. PAHs污染土壤的化学氧化修复技术研究[D]. 北京: 北京化工大学, 2012. |
WANG Chunyan. The research of remediation technology of PAHs contaminated soil by chemical oxidation[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
24 | 赵丹, 廖晓勇, 阎秀兰, 等. 不同化学氧化剂对焦化污染场地多环芳烃的修复效果[J]. 环境科学, 2011, 32(3): 857-863. |
ZHAO Dan, LIAO Xiaoyong, YAN Xiulan, et al. Chemical oxidants for remediation of soils contaminated with polycyclic aromatic hydrocarbons at a coking site[J]. Environmental Science, 2011, 32(3): 857-863. | |
25 | 占升, 郑义, 李森, 等. 不同氧化剂活化过硫酸钠对土壤中多环芳烃降解的影响[J]. 浙江农业学报, 2017, 29(1): 129-136. |
ZHAN Sheng, ZHENG Yi, LI Sen, et al. Degradation of PAHs in soil by different oxidants activated sodium persulfate[J]. Acta Agriculturae Zhejiangensis, 2017, 29(1): 129-136. | |
26 | 徐源洲, 张力浩, 魏志敏, 等. 硫酸根自由基高级氧化技术对污染场地多环芳烃的修复效果研究[J]. 土壤, 2020, 52(3): 532-538. |
XU Yuanzhou, ZHANG Lihao, WEI Zhimin, et al. Effects of sulfate radical advanced oxidation technology on PAHs remediation in contaminated sites[J]. Soils, 2020, 52(3): 532-538. | |
27 | HUSSAIN Imtyaz, LI Mingyu, ZHANG Yongqing, et al. Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J]. Chemical Engineering Journal, 2017, 311: 163-172. |
28 | 张羽. 零价铁活化过硫酸钠降解土壤中多环芳烃[D]. 北京: 中国地质大学(北京), 2019. |
ZHANG Yu. Degradation of PAHs in soil by zero-valent iron activated sodium persulfate[D]. Beijing: China University of Geosciences (Beijing), 2019. | |
29 | 李海红. 硫化纳米零价铁对水中诺氟沙星去除的机理研究[D]. 太原: 太原理工大学, 2020. |
LI Haihong. Study on removal mechanism of norfloxacin in water by sulfidated nanoscale zero-valent iron[D]. Taiyuan: Taiyuan University of Technology, 2020. | |
30 | PELUFFO M, PARDO F, SANTOS A, et al. Use of different kinds of persulfate activation with iron for the remediation of a PAH-contaminated soil[J]. Science of the Total Environment, 2016, 563: 649-656. |
31 | ZHOU Zhou, LIU Xitao, MA Jun, et al. Activation of persulfate by vanadium oxide modified carbon nanotube for 17 β - e s t r a d i o l degradation in soil: Mechanism, application and ecotoxicity assessment[J]. Science of the Total Environment, 2023, 858: 159760. |
[1] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[2] | ZHANG Shirui, FAN Zhenlian, SONG Huiping, ZHANG Lina, GAO Hongyu, CHENG Shuyan, CHENG Fangqin. Research progress of fly ash supported photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4043-4058. |
[3] | CHEN Fuqiang, ZHONG Zhaoping, QI Renzhi. Research progress on copper-based catalysts for electrochemical reduction of carbon dioxide to formic acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3051-3060. |
[4] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[5] | XIE Zhongkai, SHI Weidong. Research progress of charge polarized photocatalysts in photoconversion carbon dioxide into multi-carbon chemicals [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2714-2722. |
[6] | LU Xinxin, CAI Dongren, ZHAN Guowu. Research progress in the construction of integrated catalysts based on solid precursors and their application in CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2786-2802. |
[7] | GUI Xin, CHEN Huiyong, BAI Boyang, JIA Yongliang, MA Xiaoxun. Catalytic hydrogenation of pyrene over Mo-doped NiC/Al-MCM-41 [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2386-2395. |
[8] | LIU Miao, JIAO Yingying, DING Ling, LI Chengcheng, HE Ying, SUN Liangliang, HAO Qingqing, CHEN Huiyong, LUO Qunxing. Acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural: Reaction, separation and process coupling [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2526-2543. |
[9] | WANG Mengyu, FAN Hongxia, LIANG Changhai, LI Wenying. Influence of zeolite confinement effect on its acidic characterization and catalytic performance [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2600-2610. |
[10] | XIE Xiaojin, ZHANG Xiaoxue, LIU Xiaoling, CHONG Mingben, CHENG Dangguo, CHEN Fengqiu. Effect of acidic properties of single-crystalline hierarchical ZSM-5 zeolite on its activity and mass transfer in n-heptane catalytic cracking [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2661-2672. |
[11] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[12] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[13] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[14] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[15] | WANG Bicong, PAN Dawei, XIE Rui, JU Xiaojie, LIU Zhuang, WANG Wei, CHU Liangyin. Fabrication of multi-enzyme@ZIF-8 for extraction of anthocyanins from black rice [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1403-1411. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |