| 1 |
SINGH Sandeepa. Energy crisis and climate change: Clobal concerns and their solutions[M]//Energy: Crises, Challenges and Solutions, New York: Weley, 2021: 1-17.
|
| 2 |
MEGÍA Pedro J, VIZCAÍNO Arturo J, CALLES José A, et al. Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review[J]. Energy & Fuels, 2021, 35(20): 16403-16415.
|
| 3 |
CHAI Siqi, ZHANG Guojie, LI Guoqiang, et al. Industrial hydrogen production technology and development status in China: A review[J]. Clean Technologies and Environmental Policy, 2021, 23(7): 1931-1946.
|
| 4 |
庞志成, 罗震宁. 碱性电解水制氢镍合金阴极材料的研究进展[J]. 能源技术, 2004(1): 19-21, 26.
|
|
PANG Zhicheng, LUO Zhenning. Recent development of Ni-base alloy as a cathode materials for the production of hydrogen by alkaline water electrolysis[J]. Energy Technology, 2004(1): 19-21, 26.
|
| 5 |
KOJIMA Yoshitsugu. Hydrogen storage materials for hydrogen and energy carriers[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18179-18192.
|
| 6 |
HUANG Lei, ZAMAN Shahid, TIAN Xinlong, et al. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells[J]. Accounts of Chemical Research, 2021, 54(2): 311-322.
|
| 7 |
KABIR Sadia, MEDINA Samantha, WANG Guanxiong, et al. Improving the bulk gas transport of Fe-N-C platinum group metal-free nanofiber electrodes via electrospinning for fuel cell applications[J]. Nano Energy, 2020, 73: 104791.
|
| 8 |
MENG Aiyun, ZHANG Liuyang, CHENG Bei, et al. Dual cocatalysts in TiO2 photocatalysis[J]. Advanced Materials, 2019, 31(30): e1807660.
|
| 9 |
ZHANG Wei, TIAN Yong, HE Haili, et al. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications[J]. National Science Review, 2020, 7(11): 1702-1725.
|
| 10 |
GONG Mingfu, XIAO Shilin, YU Xian, et al. Research progress of photocatalytic sterilization over semiconductors[J]. RSC Advances, 2019, 9(34): 19278-19284.
|
| 11 |
JEON Jong Pil, KWEON Do Hyung, JANG Boo Jae, et al. Enhancing the photocatalytic activity of TiO2 catalysts[J]. Advanced Sustainable Systems, 2020, 4(12): 2000197.
|
| 12 |
CHEN Jiazang, TAO Huabing, LIU Bin. Unraveling the intrinsic structures that influence the transport of charges in TiO2 electrodes[J]. Advanced Energy Materials, 2017, 7(23): 1700886.
|
| 13 |
LI Zhenzi, WANG Shijie, WU Jiaxing, et al. Recent progress in defective TiO2 photocatalysts for energy and environmental applications[J]. Renewable and Sustainable Energy Reviews, 2022, 156: 111980.
|
| 14 |
KIM Moon-Ju, YUN Tae Gyeong, Joo-Yoon NOH, et al. Laser-induced surface reconstruction of nanoporous Au-modified TiO2 nanowires for in situ performance enhancement in desorption and ionization mass spectrometry[J]. Advanced Functional Materials, 2021, 31(29): 2102475.
|
| 15 |
LIU Fengqiang, WANG Liming, XU Lihui, et al. Preparation and photocatalytic performance of hollow spherical TiO2/Cu2O composites[J]. Nano, 2023, 18(5): 2250090.
|
| 16 |
LIU Liyuan, HOU Kaiming, ZHANG Zhengyang, et al. Dual active sites over TiO2 homojunction through tungsten doping and oxygen vacancies for enhanced photoelectrochemical properties[J]. Journal of Alloys and Compounds, 2023, 962: 171193.
|
| 17 |
NEOPHYTIDES S G, ZAFEIRATOS S, PAPAKONSTANTINOU G D, et al. Extended Brewer hypo-hyper-d-interionic bonding theory—Ⅰ. Theoretical considerations and examples for its experimental confirmation[J]. International Journal of Hydrogen Energy, 2005, 30(2): 131-147.
|
| 18 |
HUANG Haibao, LEUNG Dennis Y C. Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles[J]. ACS Catalysis, 2011, 1(4): 348-354.
|
| 19 |
PATERSON Gary W, WEBSTER Robert W H, ROSS Andrew, et al. Fast pixelated detectors in scanning transmission electron microscopy. Part Ⅱ: Post-acquisition data processing, visualization, and structural characterization[J]. Microscopy and Microanalysis, 2020, 26(5): 944-963.
|
| 20 |
LI Junkang, WANG Fenfen, ZHANG Yang, et al. Engineering the electronic structures of hetero-diatomic iron-manganese sites by d-d orbital hybridization for boosting oxygen reduction[J]. Applied Catalysis B: Environmental, 2023, 338: 123090.
|
| 21 |
MCDOWELL Matthew T, Ill RYU, LEE Seok Woo, et al. Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy[J]. Advanced Materials, 2012, 24(45): 6034-6041.
|
| 22 |
KITE Sagar V, KADAM Abhijit Nanaso, SATHE Dattatraya J, et al. Nanostructured TiO2 sensitized with MoS2 nanoflowers for enhanced photodegradation efficiency toward methyl orange[J]. ACS Omega, 2021, 6(26): 17071-17085.
|
| 23 |
MEI Zihui, WANG Guohong, YAN Suding, et al. Rapid microwave-assisted synthesis of 2D/1D ZnIn2S4/TiO2 S-scheme heterojunction for catalyzing photocatalytic hydrogen evolution[J]. Acta Physico Chimica Sinica, 2021, 37(6): 2009097.
|
| 24 |
GUAN Renquan, WANG Dandan, ZHANG Yujun, et al. Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface[J]. Applied Catalysis B: Environmental, 2021, 282: 119580.
|
| 25 |
YANG Nailiang, ZHANG Zhicheng, CHEN Bo, et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation[J]. Advanced Materials, 2017, 29(29): 1700769.
|
| 26 |
BAI Shuxing, SHAO Qi, WANG Pengtang, et al. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles[J]. Journal of the American Chemical Society, 2017, 139(20): 6827-6830.
|
| 27 |
李善奇, 李双明, 于三三. 氮、硼掺杂石墨烯活性位点及其在氧化反应中作用的研究进展[J]. 分子催化, 2023, 37(3): 293-304.
|
|
LI Shanqi, LI Shuangming, YU Sansan. Research progress on active sites of nitrogen and boron doped graphene and their roles in oxidation reactions[J]. Journal of Molecular Catalysis (China), 2023, 37(3): 293-304.
|
| 28 |
RUNGTAWEEVORANIT Bunyarat, BAEK Jayeon, ARAUJO Joyce R, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol[J]. Nano Letters, 2016, 16(12): 7645-7649.
|
| 29 |
高荔, 石志远, 吴保玉, 等. 介微孔复合材料Beta-MCM-41的制备及其正庚烷临氢异构催化性能[J]. 石油炼制与化工, 2023, 54(10): 92-101.
|
|
GAO Li, SHI Zhiyuan, WU Baoyu, et al. Preparation of meso-microporous composite beta-MCM-41 and its catalytic performance for n-heptane hydroisomerization[J]. Petroleum Processing and Petrochemicals, 2023, 54(10): 92-101.
|
| 30 |
李若楠. 负载Ni、Co掺杂锌铁氧体的煤基多孔炭复合材料制备及吸波性能研究[D]. 徐州: 中国矿业大学(江苏), 2023.
|
|
LI Ruonan. Preparation and microwave absorbing properties of coal-based porous carbon composites loaded with Ni and Co doped zinc ferrite[D]. Xuzhou: China University of Mining and Technology, 2023.
|
| 31 |
张毅博. 介孔硅基POMs@MOFs双活性位点复合材料的制备及其催化性能研究[D]. 长春: 长春工业大学, 2023.
|
|
ZHANG Yibo. Preparation and catalytic performance of mesoporous silica-based POMs@MOFs double active site composites[D].Changchun: Changchun University of Technology, 2023.
|
| 32 |
PAENGJUN Navarut, VIBULYASEAK Kasimanat, OGAWA Makoto. Heterostructural transformation of mesoporous silica-titania hybrids[J]. Scientific Reports, 2021, 11(1): 3210.
|
| 33 |
ZOU Qing, XU Fan, MA Jinling, et al. Carboxylate-assisted ZIF-derived Co nanoclusters anchoring hierarchically porous carbon as high-efficient zinc-air batteries cathode catalysts[J]. Journal of Alloys and Compounds, 2022, 923: 166393.
|
| 34 |
LI Ruchun, HU Bihua, YU Tongwen, et al. New TiO2-based oxide for catalyzing alkaline hydrogen evolution reaction with noble metal-like performance[J]. Small Methods, 2021, 5(6): e2100246.
|