Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (S1): 315-324.DOI: 10.16085/j.issn.1000-6613.2024-0469
• Industrial catalysis • Previous Articles Next Articles
HAN Hongjing1,2(), CHE Yu1,2, TIAN Yuxuan1,2, WANG Haiying1,2, ZHANG Yanan1,2, CHEN Yanguang1,2
Received:
2024-03-22
Revised:
2024-06-12
Online:
2024-12-06
Published:
2024-11-20
Contact:
HAN Hongjing
韩洪晶1,2(), 车宇1,2, 田宇轩1,2, 王海英1,2, 张亚男1,2, 陈彦广1,2
通讯作者:
韩洪晶
作者简介:
韩洪晶(1980—),女,副教授,博士生导师,研究方向为生物质转化利用。E-mail:hongjing_han@163.com。
基金资助:
CLC Number:
HAN Hongjing, CHE Yu, TIAN Yuxuan, WANG Haiying, ZHANG Yanan, CHEN Yanguang. Advances on catalysts and solvents for catalytic hydrogenolysis of lignin[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 315-324.
韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0469
反应物 | 溶剂 | 催化剂 | 反应条件 | 主产物收率 | 参考 文献 |
---|---|---|---|---|---|
2-苯氧基-1-苯乙醇 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(81%) | [ |
桦木木质素 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(17%) | [ |
愈创木酚 | 甲醇 | SiO2-Al2O3 | 400℃、1h | 芳烃(57.93%) | [ |
2-(2-甲氧基苯氧基)- 1-苯基乙醇 | 超临界甲醇 | Cu/CuMgAlO x | 300℃、4h | 乙苯(100%) 愈创木酚(96%) | [ |
苄基苯醚 | 乙醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 异丙醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(100%) 环己醇(100%) | [ |
苄基苯醚 | 叔丁醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 2-丁醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(52.34%) 苯酚(4.15%) 环己醇(48.19%) | [ |
硫酸盐木质素 | 甲酸 | Ni/沸石分子筛 | 200℃、3h | 生物油(93.5%±4.1%) | [ |
香兰素 | 异丙醇 | PdNi/CuFe2O4 | 180℃、3h | 环己醇(95.8%) | [ |
硫酸盐木质素 | 异丙醇 | Ni-Cu/H-Beta | 330℃、3h | 环烷烃(50.83%) | [ |
硫酸盐木质素 | 1,4二烷/甲醇/异丙醇 | MoO3-350 | 280℃、6h | 石油醚可溶性产物[87%(质量分数)] | [ |
碱木质素 | 1,4二烷/乙醇/水 | Pd/C NaOH | 260℃、4h | 苄醇[26.25%(质量分数)] | [ |
碱木质素 | 甲酸/异丙醇 | WO3-Al2O3 | 240℃、8h | 生物油(63.4%) | [ |
玉米秸秆木质素 | 甲酸/异丙醇/水 | Co/AC-N | 235℃、200min | 酚类化合物(23.8%) | [ |
杨木木质素 | 乙醇/异丙醇 | NiCu/C | 270℃、4h | 单酚含量63.4%(质量分数) | [ |
反应物 | 溶剂 | 催化剂 | 反应条件 | 主产物收率 | 参考 文献 |
---|---|---|---|---|---|
2-苯氧基-1-苯乙醇 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(81%) | [ |
桦木木质素 | 水 | PdNi4/MIL-100(Fe) | 180℃、6h | 酚类、酮类(17%) | [ |
愈创木酚 | 甲醇 | SiO2-Al2O3 | 400℃、1h | 芳烃(57.93%) | [ |
2-(2-甲氧基苯氧基)- 1-苯基乙醇 | 超临界甲醇 | Cu/CuMgAlO x | 300℃、4h | 乙苯(100%) 愈创木酚(96%) | [ |
苄基苯醚 | 乙醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 异丙醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(100%) 环己醇(100%) | [ |
苄基苯醚 | 叔丁醇 | NiCu/Al2O3 | 200℃、2h | — | [ |
苄基苯醚 | 2-丁醇 | NiCu/Al2O3 | 200℃、2h | 甲苯(52.34%) 苯酚(4.15%) 环己醇(48.19%) | [ |
硫酸盐木质素 | 甲酸 | Ni/沸石分子筛 | 200℃、3h | 生物油(93.5%±4.1%) | [ |
香兰素 | 异丙醇 | PdNi/CuFe2O4 | 180℃、3h | 环己醇(95.8%) | [ |
硫酸盐木质素 | 异丙醇 | Ni-Cu/H-Beta | 330℃、3h | 环烷烃(50.83%) | [ |
硫酸盐木质素 | 1,4二烷/甲醇/异丙醇 | MoO3-350 | 280℃、6h | 石油醚可溶性产物[87%(质量分数)] | [ |
碱木质素 | 1,4二烷/乙醇/水 | Pd/C NaOH | 260℃、4h | 苄醇[26.25%(质量分数)] | [ |
碱木质素 | 甲酸/异丙醇 | WO3-Al2O3 | 240℃、8h | 生物油(63.4%) | [ |
玉米秸秆木质素 | 甲酸/异丙醇/水 | Co/AC-N | 235℃、200min | 酚类化合物(23.8%) | [ |
杨木木质素 | 乙醇/异丙醇 | NiCu/C | 270℃、4h | 单酚含量63.4%(质量分数) | [ |
1 | 路瑶, 魏贤勇, 宗志敏, 等. 木质素的结构研究与应用[J]. 化学进展, 2013, 25(5): 838-858. |
LU Yao, WEI Xianyong, ZONG Zhimin, et al. Structural investigation and application of lignins[J]. Chemistry Industry and Engineering Progress, 2013, 25(5): 838-858. | |
2 | AGARWAL Ashutosh, Young-Tae JO, PARK Jeong-Hun. Hybrid microwave-ultrasound assisted catalyst-free depolymerization of Kraft lignin to bio-oil[J]. Industrial Crops and Products, 2021, 162: 113300. |
3 | ZHANG Chaofeng, SHEN Xiaojun, JIN Yongcan, et al. Catalytic strategies and mechanism analysis orbiting the center of critical intermediates in lignin depolymerization[J]. Chemical Reviews, 2023, 123(8): 4510-4601. |
4 | LIU Wujun, JIANG Hong, YU Hanqing. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
5 | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
6 | SHEN Zhensheng, SHI Chengxiang, LIU Fan, et al. Advances in heterogeneous catalysts for lignin hydrogenolysis[J]. Advanced Science, 2024, 11(1): 2306693. |
7 | WAN Zhouyuanye, ZHANG Hongjie, GUO Yanzhu, et al. Advances in catalytic depolymerization of lignin[J]. ChemistrySelect, 2022, 7(40): e202202582. |
8 | 练彩霞, 李凝, 蒋武, 等. 生物质油催化加氢脱氧(HDO)反应机理及催化剂研究进展[J]. 化工进展, 2020, 39(S1): 153-162. |
LIAN Caixia, LI Ning, JIANG Wu, et al. Research progress on reaction mechanism and catalysts for catalytic hydrodeoxygenation(HDO) of biomass oil[J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 153-162. | |
9 | AUERSVALD Miloš, SHUMEIKO Bogdan, Martin STAŠ, et al. Quantitative study of straw bio-oil hydrodeoxygenation over a sulfided NiMo catalyst[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7080-7093. |
10 | LI Tan, SU Jing, WANG Huiyuan, et al. Catalytic hydropyrolysis of lignin using NiMo-doped catalysts: Catalyst evaluation and mechanism analysis[J]. Applied Energy, 2022, 316: 119115. |
11 | XIANG Liang, FAN Guoli, YANG Lan, et al. Structure-tunable pompon-like RuCo catalysts: Insight into the roles of atomically dispersed Ru-Co sites and crystallographic structures for guaiacol hydrodeoxygenation[J]. Journal of Catalysis, 2021, 398: 76-88. |
12 | Hadi ALI, VANDEVYVERE Tom, LAUWAERT Jeroen, et al. Impact of oxygen vacancies in Ni supported mixed oxide catalysts on anisole hydrodeoxygenation[J]. Catalysis Communications, 2022, 164: 106436. |
13 | SHU Riyang, LIN Yuankai, ZHOU Linxuan, et al. Enhanced lignin hydrogenolysis through synergy-induced bimetallic NiCu catalyst for chemocatalytic production of aromatic monomers[J]. Chemical Engineering Science, 2024, 286: 119654. |
14 | HUANG Yaobing, ZHANG Jilong, ZHANG Xuan, et al. Catalytic depolymerization of lignin via transfer hydrogenation strategy over skeletal CuZnAl catalyst[J]. Fuel Processing Technology, 2022, 237: 107448. |
15 | LI Wenbin, ZHU Yongfeng, LI Shuirong, et al. Catalytic fast pyrolysis of cellulose over Ce0.8Zr0.2- x Al x O2 catalysts to produce aromatic hydrocarbons: Analytical Py-GC×GC/MS[J]. Fuel Processing Technology, 2020, 205: 106438. |
16 | MA Zhiqiang, TROUSSARD Ekaterina, VAN BOKHOVEN Jeroen A. Controlling the selectivity to chemicals from lignin via catalytic fast pyrolysis[J]. Applied Catalysis A: General, 2012, 423/424: 130-136. |
17 | ROLDUGINA E A, NARANOV E R, MAXIMOV A L, et al. Hydrodeoxygenation of guaiacol as a model compound of bio-oil in methanol over mesoporous noble metal catalysts[J]. Applied Catalysis A: General, 2018, 553: 24-35. |
18 | SUN Qiming, WANG Ning, YU Jihong. Advances in catalytic applications of zeolite-supported metal catalysts[J]. Advanced Materials, 2021, 33(51): e2104442. |
19 | LI Xiangping, CHEN Guanyi, LIU Caixia, et al. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 71: 296-308. |
20 | WAN Hongliu, QIAN Lixiang, GONG Nengfeng, et al. Size-dependent structures and catalytic properties of supported bimetallic PtSn catalysts for propane dehydrogenation reaction[J]. ACS Catalysis, 2023, 13(11): 7383-7394. |
21 | RANA Masud, GHOSH Shubho, NSHIZIRUNGU Theoneste, et al. Catalytic depolymerization of Kraft lignin to high yield alkylated-phenols over CoMo/SBA-15 catalyst in supercritical ethanol[J]. RSC Advances, 2023, 13(43): 30022-30039. |
22 | HE Ping, YI Qisong, GENG Huawei, et al. Boosting the catalytic activity and stability of Ru metal clusters in hydrodeoxygenation of guaiacol through MWW zeolite pore constraints[J]. ACS Catalysis, 2022, 12(23): 14717-14726. |
23 | YUSUF Mustapha, LEEKE Gary, WOOD Joseph. Anisole hydrodeoxygenation over nickel-based catalysts: Influences of solvent and support properties[J]. Energy & Fuels, 2023, 37(2): 1225-1237. |
24 | KONG Liping, LIU Chunze, GAO Ji, et al. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst[J]. Bioresource Technology, 2019, 276: 310-317. |
25 | HUNNS James A, ARROYO Marta, LEE Adam F, et al. Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane[J]. Catalysis Science & Technology, 2016, 6(8): 2560-2564. |
26 | LI Wenlin, LI Feng, WANG Hongyan, et al. Hierarchical mesoporous ZSM-5 supported nickel catalyst for the catalytic hydrodeoxygenation of anisole to cyclohexane[J]. Molecular Catalysis, 2020, 480: 110642. |
27 | ZHU Hongwei, DU Boyu, ZHANG Zhenshu, et al. Effect of hierarchical HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to renewable phenols[J]. Journal of Porous Materials, 2022, 29(2): 445-457. |
28 | Tina ROČNIK, LIKOZAR Blaž, Edita JASIUKAITYTÈ-GROJZDEK, et al. Catalytic lignin valorisation by depolymerisation, hydrogenation, demethylation and hydrodeoxygenation: Mechanism, chemical reaction kinetics and transport phenomena[J]. Chemical Engineering Journal, 2022, 448: 137309. |
29 | WANG Yannan, WEI Lianghuan, HOU Qidong, et al. A Review on catalytic depolymerization of lignin towards high-value chemicals: Solvent and catalyst[J]. Fermentation, 2023, 9(4): 386. |
30 | XU Qian, WANG Qiang, XIAO Lingping, et al. Metal–organic framework-derived CuO catalysts for the efficient hydrogenolysis of hardwood lignin into phenolic monomers[J]. Journal of Materials Chemistry A, 2023, 11(44): 23809-23820. |
31 | MATSON Theodore D, BARTA Katalin, IRETSKII Alexei V, et al. One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels[J]. Journal of the American Chemical Society, 2011, 133(35): 14090-14097. |
32 | KONG Xiangchen, LIU Chao, LEI Ming, et al. Critical roles of the oxygen-containing functional groups via β -O-4 lignin linkage hydrogenolysis over copper catalysts[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(32): 10939-10947. |
33 | ZHANG Xia, LI Wenzhi, WANG Jindong, et al. Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst[J]. Fuel, 2022, 323: 124428. |
34 | VÉDRINE Jacques C. Importance, features and uses of metal oxide catalysts in heterogeneous catalysis[J]. Chinese Journal of Catalysis, 2019, 40(11): 1627-1636. |
35 | PROFETI Luciene P R, TICIANELLI Edson A, ASSAF Elisabete M. Production of hydrogen via steam reforming of biofuels on Ni/CeO2-Al2O3 catalysts promoted by noble metals[J]. International Journal of Hydrogen Energy, 2009, 34(12): 5049-5060. |
36 | WANG Ze, ZENG Ying, LIN Weigang, et al. In-situ hydrodeoxygenation of phenol by supported Ni catalyst-explanation for catalyst performance[J]. International Journal of Hydrogen Energy, 2017, 42(33): 21040-21047. |
37 | LU Xinyu, GU Xiaoli. Efficient lignin conversion over Ni/(Fe/Zn/Co/Mo/Cu)-WO3/Al2O3 for selectively yielding alkyl phenols[J]. Catalysis Science & Technology, 2023, 13(2): 468-478. |
38 | Florent HÉROGUEL, NGUYEN Xuan Trung, LUTERBACHER Jeremy S. Catalyst support and solvent effects during lignin depolymerization and hydrodeoxygenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 16952-16958. |
39 | ZHANG Yaowen, WANG Wenyun, FAN Guoli, et al. Defect-decorated NiFe bimetallic nanocatalysts for the enhanced hydrodeoxygenation of guaiacol[J]. ChemCatChem, 2022, 14(19): e202200585. |
40 | WU Kui, WANG Weiyan, GUO Haiwei, et al. Engineering Co nanoparticles supported on defect MoS2– x for mild deoxygenation of lignin-derived phenols to arenes[J]. ACS Energy Letters, 2020, 5(4): 1330-1336. |
41 | XIE Jin, XI Yongjie, GAO Wensheng, et al. Hydrogenolysis of lignin model compounds on Ni nanoparticles surrounding the oxygen vacancy of CeO2 [J]. ACS Catalysis, 2023, 13(14): 9577-9587. |
42 | YE Ke, LIU Ying, WU Shubin, et al. A review for lignin valorization: Challenges and perspectives in catalytic hydrogenolysis[J]. Industrial Crops and Products, 2021, 172: 114008. |
43 | NIE Renfeng, TAO Yuewen, NIE Yunqing, et al. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts[J]. ACS Catalysis, 2021, 11(3): 1071-1095. |
44 | RAIKWAR Deepak, MAJUMDAR Saptarshi, SHEE Debaprasad. Effects of solvents in the depolymerization of lignin into value-added products: A review[J]. Biomass Conversion and Biorefinery, 2023, 13(13): 11383-11416. |
45 | ZHANG Jiawei, LU Guoping, CAI Chun. Self-hydrogen transfer hydrogenolysis of β-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd-Ni BMNPs[J]. Green Chemistry, 2017, 19(19): 4538-4543. |
46 | KUMAR Avnish, BISWAS Bijoy, KAUR Ramandeep, et al. Hydrothermal oxidative valorisation of lignin into functional chemicals: A review[J]. Bioresource Technology, 2021, 342: 126016. |
47 | WANG Da, WANG Yuyang, LI Xiaoyu, et al. Lignin valorization: A novel in situ catalytic hydrogenolysis method in alkaline aqueous solution[J]. Energy & Fuels, 2018, 32(7): 7643-7651. |
48 | ROBERTS Virginia M, STEIN Valentin, REINER Thomas, et al. Towards quantitative catalytic lignin depolymerization[J]. Chemistry, 2011, 17(21): 5939-5948. |
49 | KOCATURK Engin, SALAN Tufan, OZCELIK Orhan, et al. Recent advances in lignin-based biofuel production[J]. Energies, 2023,16(8): 3382. |
50 | ZHANG Dequan, ZHANG Xinghua, YIN Han, et al. Production of aromatic hydrocarbons from lignin derivatives by catalytic cracking over a SiO2-Al2O3 catalyst[J]. RSC Advances, 2023, 13(16): 10830-10839. |
51 | CHOU Weichao, LU Pingping, LOU Bin, et al. Pt/CeCrO2- x : A multifunctional catalyst for tandem catalysis of lignocellulose hydro-liquefaction and Guerbet reaction[J]. Applied Catalysis B: Environmental, 2024, 342: 123320. |
52 | GILKEY Matthew J, XU Bingjun. Heterogeneous catalytic transfer hydrogenation as an effective pathway in biomass upgrading[J]. ACS Catalysis, 2016, 6(3): 1420-1436. |
53 | SUNIL MORE Ganesh, RAJENDRA KANCHAN Dipika, BANERJEE Arghya, et al. Selective catalytic hydrodeoxygenation of vanillin to 2-methoxy-4-methyl phenol and 4-methyl cyclohexanol over Pd/CuFe2O4 and PdNi/CuFe2O4 catalysts[J]. Chemical Engineering Journal, 2023, 462: 142110. |
54 | WU Fapeng, ZHAO Yunpeng, FU Zongpin, et al. Catalytic transfer hydrogenolysis mechanism of benzyl phenyl ether over NiCu/Al2O3 using isopropanol as hydrogen source[J]. Fuel Processing Technology, 2023, 250: 107874. |
55 | WANG Wenhua, NIU Muge, HOU Yucui, et al. Catalytic conversion of biomass-derived carbohydrates to formic acid using molecular oxygen[J]. Green Chemistry, 2014, 16(5): 2614-2618. |
56 | LU Xinyu, WANG Dandan, GUO Haoquan, et al. Insights into depolymerization pathways and mechanism of alkali lignin over a Ni1.2- Z r O 2 / W O 3 / γ - A l 2 O 3 catalyst[J]. Chinese Journal of Chemical Engineering, 2022, 48: 191-201. |
57 | HUANG Shanhua, MAHMOOD Nubla, ZHANG Yongsheng, et al. Reductive de-polymerization of Kraft lignin with formic acid at low temperatures using inexpensive supported Ni-based catalysts[J]. Fuel, 2017, 209: 579-586. |
58 | Mikel OREGUI-BENGOECHEA, GANDARIAS Inaki, ARIAS Pedro L, et al. Unraveling the role of formic acid and the type of solvent in the catalytic conversion of lignin: A holistic approach[J]. ChemSusChem, 2017, 10(4): 754-766. |
59 | TANG Bingyue, LI Wenzhi, ZHANG Xia, et al. Depolymerization of Kraft lignin to liquid fuels with MoS2 derived oxygen-vacancy-enriched MoO3 in a hydrogen-donor solvent system[J]. Fuel, 2022, 324: 124674. |
60 | LI Xi, LIU Yuan, WANG Wenjin, et al. Effect of solvent systems on the synergistic catalytic hydrogenolysis of alkaline lignin over Pd/C-NaOH[J]. Fuel, 2023, 349: 128570. |
61 | DABRAL Saumya, ENGEL Julien, MOTTWEILER Jakob, et al. Mechanistic studies of base-catalysed lignin depolymerisation in dimethyl carbonate[J]. Green Chemistry, 2018, 20(1): 170-182. |
62 | SHEN Changcheng, LI Wenzhi, ZHANG Baikai, et al. Valorization of lignin in native corn stover via fractionation-hydrogenolysis process over cobalt-supported catalyst without external hydrogen[J]. Molecular Catalysis, 2021, 514: 111832. |
63 | CHENG Chongbo, LI Pengfei, YU Wenbing, et al. Nonprecious metal/bimetallic catalytic hydrogenolysis of lignin in a mixed-solvent system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(43): 16217-16228. |
[1] | WAN Zhen, WANG Shaoqing, LI Zhihe, ZHAO Tiansheng. Advances in HZSM-5 catalyzed pyrolysis of lignin to aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 517-532. |
[2] | HE Fang, XU Gaojie, PEI Xiang, SUN Dezhi, NING Pengge, CAO Hongbin. Application of IPE-23 extractant in the recovery of lithium from lithium-containing waste liquors [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 627-639. |
[3] | LI Shuaizhe, NIE Yichen, PHIDJAVARD Keomeesay, GU Wen, ZHANG Wei, LIU Na, XU Gaoxiang, LIU Ying, LI Xingyong, CHEN Yubao. Research progress on non-precious metal-catalyzed hydrogenation and deoxygenation of biomass to produce hydrocarbon-based biofuels [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 225-242. |
[4] | LIU Zhentao, MEI Jinlin, WANG Chunya, DUAN Aijun, GONG Yanjun, XU Chunming, WANG Xilong. Development in catalysts for one-step hydrogenation of bio-jet fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4909-4924. |
[5] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[6] | HE Yixue, QIN Xianchao, MA Weifang. Research progress on in situ remediation of halogenated hydrocarbon contamination in groundwater by persulfate-based advanced oxidation process [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4072-4088. |
[7] | ZHAO Peitao, FU Binbin, ZHAO Quan, ZUO Wu, ZHOU Haiyun, HAN Dongtai. Thermal decomposition of plastics via low pressure and superheated solvent steam and its characteristics [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3420-3429. |
[8] | LI Yan, WU Qin, CHEN Kangcheng, ZHANG Yaoyuan, SHI Daxin, LI Hansheng. Modified polyimide pervaporation membranes for dehydration of organic solvent [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2915-2927. |
[9] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
[10] | ZHOU Hao, WANG Xurui, ZHAO Huishuang, WEN Nini, SU Yaxin. Selective catalytic reduction of nitric oxide with propylene over CuCe-SAPO-34 catalysts under diesel engine exhaust [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3093-3099. |
[11] | XIE Guoping, TAN Xuesong, LIU Peng, MIAO Changlin, XU Guangwen, ZHUANG Xinshu. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358. |
[12] | LI Haipeng, WU Tong, WANG Qi, GAO Shiwang, WANG Xiaolong, LI Xu, GAO Xinhua, NIAN Pei, WEI Yibin. Effective methanol production by CO2 hydrogenation using water-permeable NaA zeolite membrane [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2834-2842. |
[13] | LIU Xianzhe, HU Zhenzhong, HU Dawei, LI Xian, HE Shize, ZHAO Chunliang, XIA Ciliang, WU Bo, ZHANG Xiaoyong, LUO Guangqian, YAO Hong. Coking performance of extracts from degradative solvent extraction of low-rank coals for coal blending and coke making [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2420-2427. |
[14] | FENG Feifei, TIAN Bin, MA Pengfei, WEI Jianxin, XU Long, TIAN Yuanyu, MA Xiaoxun. Research progress on mechanism and methods of lignin separation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2512-2525. |
[15] | DUAN Xiang, TIAN Ye, DONG Wenwei, SONG Song, LI Xingang. Research progress on reaction networks and catalytic reaction mechanisms of phthalic anhydride synthesis [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2587-2599. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |