Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3347-3358.DOI: 10.16085/j.issn.1000-6613.2023-0859
• Resources and environmental engineering • Previous Articles
XIE Guoping1(), TAN Xuesong2, LIU Peng1, MIAO Changlin2, XU Guangwen1, ZHUANG Xinshu2()
Received:
2023-05-25
Revised:
2023-09-15
Online:
2024-07-02
Published:
2024-06-15
Contact:
ZHUANG Xinshu
谢国平1(), 谭雪松2, 刘鹏1, 苗长林2, 许光文1, 庄新姝2()
通讯作者:
庄新姝
作者简介:
谢国平(1997—),男,硕士研究生,研究方向为有机溶剂预处理。E-mail:2559884479@qq.com。
基金资助:
CLC Number:
XIE Guoping, TAN Xuesong, LIU Peng, MIAO Changlin, XU Guangwen, ZHUANG Xinshu. Research progress of lignocellulosic pretreatment based on bio-based derived organic solvents[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3347-3358.
谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0859
溶剂 | Hansen溶解度参数 | 相对能差(RED) | ||
---|---|---|---|---|
色散分量 | 极性分量 | 氢键分量 | ||
乙醇 | 15.8 | 8.8 | 19.4 | 1.37 |
甲苯 | 18.0 | 1.4 | 2.0 | 1.53 |
四氢呋喃 | 16.8 | 5.7 | 8.0 | 1.06 |
戊内酯 | 15.5 | 4.7 | 6.6 | 1.38 |
昔兰尼 | 18.8 | 10.5 | 7.0 | 0.89 |
二甲基异山梨醇 | 17.6 | 7.1 | 7.5 | 1.06 |
乙二醇 | 17.0 | 11.0 | 26.0 | 1.00 |
二甲基四氢呋喃 | 16.9 | 5.0 | 4.3 | 1.34 |
甲基异丙基酮 | 15.1 | 6.1 | 4.1 | 1.48 |
苯氧乙醇 | 17.0 | 6.1 | 12.3 | 0.93 |
丁醇 | 16.0 | 5.7 | 15.8 | 1.06 |
戊醇 | 15.1 | 5.7 | 15.9 | 1.16 |
溶剂 | Hansen溶解度参数 | 相对能差(RED) | ||
---|---|---|---|---|
色散分量 | 极性分量 | 氢键分量 | ||
乙醇 | 15.8 | 8.8 | 19.4 | 1.37 |
甲苯 | 18.0 | 1.4 | 2.0 | 1.53 |
四氢呋喃 | 16.8 | 5.7 | 8.0 | 1.06 |
戊内酯 | 15.5 | 4.7 | 6.6 | 1.38 |
昔兰尼 | 18.8 | 10.5 | 7.0 | 0.89 |
二甲基异山梨醇 | 17.6 | 7.1 | 7.5 | 1.06 |
乙二醇 | 17.0 | 11.0 | 26.0 | 1.00 |
二甲基四氢呋喃 | 16.9 | 5.0 | 4.3 | 1.34 |
甲基异丙基酮 | 15.1 | 6.1 | 4.1 | 1.48 |
苯氧乙醇 | 17.0 | 6.1 | 12.3 | 0.93 |
丁醇 | 16.0 | 5.7 | 15.8 | 1.06 |
戊醇 | 15.1 | 5.7 | 15.9 | 1.16 |
溶剂 | 沸点/℃ | 闪点/℃ | 绿色溶剂等级 | |||
---|---|---|---|---|---|---|
安全 | 健康 | 环境 | CHEM21 | |||
乙醇 | 78.3 | 14 | 4 | 3 | 3 | 推荐 |
甲苯 | 110.6 | 4 | 5 | 6 | 3 | 有问题 |
四氢呋喃 | 66 | -14 | 6 | 7 | 5 | 有问题 |
戊内酯 | 205 | 81 | 1 | 5 | 7 | 有问题 |
昔兰尼 | 226 | 108 | 1 | 2 | 7 | 有问题 |
二甲基异山梨醇 | 93~95 | 120 | 1 | 2 | 3 | 推荐 |
乙二醇 | 198 | 111 | 1 | 2 | 5 | 推荐 |
二甲基四氢呋喃 | 80 | -11 | 6 | 5 | 3 | 有问题 |
甲基异丙基酮 | 94 | -7.9 | 5 | 3 | 3 | 推荐 |
苯氧乙醇 | 245 | 105 | 1 | 4 | 3 | 推荐 |
丁醇 | 118 | 35 | 3 | 4 | 3 | 推荐 |
戊醇 | 137 | 49 | 3 | 7 | 4 | 有问题 |
溶剂 | 沸点/℃ | 闪点/℃ | 绿色溶剂等级 | |||
---|---|---|---|---|---|---|
安全 | 健康 | 环境 | CHEM21 | |||
乙醇 | 78.3 | 14 | 4 | 3 | 3 | 推荐 |
甲苯 | 110.6 | 4 | 5 | 6 | 3 | 有问题 |
四氢呋喃 | 66 | -14 | 6 | 7 | 5 | 有问题 |
戊内酯 | 205 | 81 | 1 | 5 | 7 | 有问题 |
昔兰尼 | 226 | 108 | 1 | 2 | 7 | 有问题 |
二甲基异山梨醇 | 93~95 | 120 | 1 | 2 | 3 | 推荐 |
乙二醇 | 198 | 111 | 1 | 2 | 5 | 推荐 |
二甲基四氢呋喃 | 80 | -11 | 6 | 5 | 3 | 有问题 |
甲基异丙基酮 | 94 | -7.9 | 5 | 3 | 3 | 推荐 |
苯氧乙醇 | 245 | 105 | 1 | 4 | 3 | 推荐 |
丁醇 | 118 | 35 | 3 | 4 | 3 | 推荐 |
戊醇 | 137 | 49 | 3 | 7 | 4 | 有问题 |
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素保留率/% | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
玉米芯 | 220℃,30min | 68.2 | 83.4 | 97.5 | [ | |||
高粱秸秆 | 200℃,60min | 87.4 | 97.1 | 91.4 | 92.8 | [ | ||
GVL/H2O | 银叶草 | 170℃,120min | 82.2 | 87.7 | 75.9 | 96.5 | [ | |
GVL/H2O | 桉树 | 120℃,60min | 77.1 | 96.1 | 81.6 | 89.1 | [ | |
GVL/H2O | 桉树 | HCl | 100℃,60min | 93.2 | 80 | 68 | 65 | [ |
GVL/H2O | 桉树 | 120℃,30min | 83.5 | 97.2 | 86.2 | 75.4 | [ | |
GVL/H2O | 桉树 | 167℃,10min | 86 | 91 | [ | |||
Cyrene/H2O | 杨木 | 120℃,60min | 72.5 | [ | ||||
Cyrene/TsOH | 竹 | TsOH | 120℃,60min | 79.1 | 90.6 | [ | ||
DMI/H2O | 桉树 | 120℃,60min | 80 | 98 | 91.6 | 82.1 | [ | |
EG/H2O | 甘蔗渣 | HCl | 120℃,60min | 71.4 | 83.5 | 61.2 | 80.4 | [ |
EG | 甘蔗渣 | HCl | 120℃,60min | 96.9 | 78.8 | 48.5 | 85.6 | [ |
EG/H2O | 玉米秸秆 | 120℃,60min | 84.7 | 81.3 | 80.3 | 70.6 | [ | |
EG/H2O | EPB | 80℃,45min | 90.4 | 81.5 | 75.1 | [ | ||
EG/H2O | 甘蔗渣 | 170℃,60min | 93 | 74.3 | 71.2 | [ | ||
EG/H2O | 甘蔗渣 | 120℃,60min | 96.9 | 84.6 | 47.5 | 82.1 | [ | |
EG/H2O | 杨木 | 120℃,10min | 42.7 | 56.9 | 94.5 | [ |
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素保留率/% | 半纤维素去除率/% | 木质素去除率/% | 纤维素酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
玉米芯 | 220℃,30min | 68.2 | 83.4 | 97.5 | [ | |||
高粱秸秆 | 200℃,60min | 87.4 | 97.1 | 91.4 | 92.8 | [ | ||
GVL/H2O | 银叶草 | 170℃,120min | 82.2 | 87.7 | 75.9 | 96.5 | [ | |
GVL/H2O | 桉树 | 120℃,60min | 77.1 | 96.1 | 81.6 | 89.1 | [ | |
GVL/H2O | 桉树 | HCl | 100℃,60min | 93.2 | 80 | 68 | 65 | [ |
GVL/H2O | 桉树 | 120℃,30min | 83.5 | 97.2 | 86.2 | 75.4 | [ | |
GVL/H2O | 桉树 | 167℃,10min | 86 | 91 | [ | |||
Cyrene/H2O | 杨木 | 120℃,60min | 72.5 | [ | ||||
Cyrene/TsOH | 竹 | TsOH | 120℃,60min | 79.1 | 90.6 | [ | ||
DMI/H2O | 桉树 | 120℃,60min | 80 | 98 | 91.6 | 82.1 | [ | |
EG/H2O | 甘蔗渣 | HCl | 120℃,60min | 71.4 | 83.5 | 61.2 | 80.4 | [ |
EG | 甘蔗渣 | HCl | 120℃,60min | 96.9 | 78.8 | 48.5 | 85.6 | [ |
EG/H2O | 玉米秸秆 | 120℃,60min | 84.7 | 81.3 | 80.3 | 70.6 | [ | |
EG/H2O | EPB | 80℃,45min | 90.4 | 81.5 | 75.1 | [ | ||
EG/H2O | 甘蔗渣 | 170℃,60min | 93 | 74.3 | 71.2 | [ | ||
EG/H2O | 甘蔗渣 | 120℃,60min | 96.9 | 84.6 | 47.5 | 82.1 | [ | |
EG/H2O | 杨木 | 120℃,10min | 42.7 | 56.9 | 94.5 | [ |
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素 保留率/% | 半纤维素 去除率/% | 木质素 去除率/% | 纤维素 酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2-MeTHF/H2O | 桦木 | 180℃,60min | — | — | — | 77.09 | [ | |
2-MeTHF/H2O | 小麦秸秆 | TsOH | 140℃,180min | 95.69 | — | 77.49 | — | [ |
2-MeTHF/H2O | 玉米秸秆 | 170℃,60min | — | — | — | 78.9 | [ | |
MIBK/H2O | 桉树 | 180℃,60min | — | 100 | 65.82 | 97.54 | [ | |
EPH/H2O | 稻草 | 120℃,180min | — | 75.83 | 72.69 | 88.06 | [ | |
EPH/H2O | 稻草 | 140℃,90min | 73.74 | 100 | 88.43 | — | [ | |
EPH/H2O | 稻草 | 120℃,30min | 79.76 | 45.9 | 82.2 | 71.26 | [ | |
Butanol/H2O | 甜菜浆 | 180℃,200min | — | 100 | 80 | 96 | [ | |
Pentanol/H2O | 金合欢木 | 170℃,30min | — | — | 70.27 | 92.14 | [ | |
Pentanol/H2O | 白杨 | 160℃,60min | 91.1 | 91 | 85 | 96 | [ |
溶剂体系 | 原料 | 催化剂 | 预处理条件 | 纤维素 保留率/% | 半纤维素 去除率/% | 木质素 去除率/% | 纤维素 酶解率/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2-MeTHF/H2O | 桦木 | 180℃,60min | — | — | — | 77.09 | [ | |
2-MeTHF/H2O | 小麦秸秆 | TsOH | 140℃,180min | 95.69 | — | 77.49 | — | [ |
2-MeTHF/H2O | 玉米秸秆 | 170℃,60min | — | — | — | 78.9 | [ | |
MIBK/H2O | 桉树 | 180℃,60min | — | 100 | 65.82 | 97.54 | [ | |
EPH/H2O | 稻草 | 120℃,180min | — | 75.83 | 72.69 | 88.06 | [ | |
EPH/H2O | 稻草 | 140℃,90min | 73.74 | 100 | 88.43 | — | [ | |
EPH/H2O | 稻草 | 120℃,30min | 79.76 | 45.9 | 82.2 | 71.26 | [ | |
Butanol/H2O | 甜菜浆 | 180℃,200min | — | 100 | 80 | 96 | [ | |
Pentanol/H2O | 金合欢木 | 170℃,30min | — | — | 70.27 | 92.14 | [ | |
Pentanol/H2O | 白杨 | 160℃,60min | 91.1 | 91 | 85 | 96 | [ |
1 | ENVELOPE Tansu Galimova Person, Manish RAM, BREYER Christian. Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050[J]. Energy Reports, 2022, 8: 14124-14143. |
2 | ICAZA Daniel, David BORGE-DIEZ, GALINDO Santiago Pulla. Proposal of 100% renewable energy production for the City of Cuenca- Ecuador by 2050[J]. Renewable Energy, 2021, 170: 1324-1341. |
3 | GALIMOVA Tansu, Manish RAM, BREYER Christian. Mitigation of air pollution and corresponding impacts during a global energy transition towards 100% renewable energy system by 2050[J]. Energy Reports, 2022, 8: 14124-14143. |
4 | BRUGGER Heike, EICHHAMMER Wolfgang, MIKOVA Nadezhda, et al. Energy Efficiency Vision 2050: How will new societal trends influence future energy demand in the European countries?[J]. Energy Policy, 2021, 152: 112216. |
5 | MUJTABA Aqib, JENA Pabitra Kumar, BEKUN Festus Victor, et al. Symmetric and asymmetric impact of economic growth, capital formation, renewable and non-renewable energy consumption on environment in OECD countries[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112300. |
6 | BERDYSHEVA Sofia, IKONNIKOVA Svetlana. The energy transition and shifts in fossil fuel use: The study of international energy trade and energy security dynamics[J]. Energies, 2021, 14(17): 5396. |
7 | WEI KIT CHIN Danny, Steven LIM, PANG Yean Ling, et al. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(4): 808-829. |
8 | YOUSUF Abu, PIROZZI Domenico, SANNINO Filomena. Fundamentals of lignocellulosic biomass[M]. London: Elsevier, 2020. |
9 | YOUSUF Abu. Biodiesel from lignocellulosic biomass—Prospects and challenges[J]. Waste Management, 2012, 32(11): 2061-2067. |
10 | ZENG Yining, HIMMEL Michael E, DING Shiyou. Visualizing chemical functionality in plant cell walls[J]. Biotechnology for Biofuels, 2017, 10(1): 1-16. |
11 | LORENCI WOICIECHOWSKI Adenise, DALMAS NETO Carlos José, PORTO DE SOUZA VANDENBERGHE Luciana, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance: Conventional processing and recent advances[J]. Bioresource Technology, 2020, 304: 122848. |
12 | YIN Xiaoyan, WEI Linshan, PAN Xueyuan, et al. The pretreatment of lignocelluloses with green solvent as biorefinery preprocess: A minor review[J]. Frontiers in Plant Science, 2021, 12: 670061. |
13 | ZHANG Ke, PEI Zhijian, WANG Donghai. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review[J]. Bioresource Technology, 2016, 199: 21-33. |
14 | WEI KIT CHIN Danny, Steven LIM, PANG Yean Ling, et al. Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing[J]. Biofuels, Bioproducts and Biorefining, 2020, 14(4): 808-829. |
15 | ROY Ranen, RAHMAN Md Sajjadur, RAYNIE Douglas E. Recent advances of greener pretreatment technologies of lignocellulose[J]. Current Research in Green and Sustainable Chemistry, 2020, 3: 100035. |
16 | PUTRO Jindrayani Nyoo, SOETAREDJO Felycia Edi, LIN Shi-Yow, et al. Pretreatment and conversion of lignocellulose biomass into valuable chemicals[J]. RSC Advances, 2016, 6(52): 46834-46852. |
17 | ZHAO Xuebing, CHENG Keke, LIU Dehua. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis[J]. Applied Microbiology and Biotechnology, 2009, 82(5): 815-827. |
18 | HILDEBRAND Joel H. A critique of the theory of solubility of non-electrolytes[J]. Chemical Reviews, 1949, 44(1): 37-45. |
19 | ZHANG Zhanying, HARRISON Mark D, RACKEMANN Darryn W, et al. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification[J]. Green Chemistry, 2016, 18(2): 360-381. |
20 | JOELH Hildenrand, ROBERT Scott. Regular solutions[M]. Englewood Cliffs: Prentice Hall, 1962. |
21 | HANSEN Charles M. Hansen solubility parameters: a user’s handbook[M]. 2nd ed. Boca Raton, Fla.: Taylor & Francis, 2007. |
22 | BARTON Allan F M. CRC handbook of solubility parameters and other cohesion parameters[M]. 2nd ed. New York:Routledge, 1991. |
23 | BARTON Allan F M. Solubility parameters[J]. Chemical Reviews, 1975, 75(6): 731-753. |
24 | HANSEN Charles M. The universality of the solubility parameter[J]. Product R&D, 1969, 8(1): 2-11. |
25 | TAN Xuesong, ZHANG Quan, WANG Wen, et al. Comparison study of organosolv pretreatment on hybrid pennisetum for enzymatic saccharification and lignin isolation[J]. Fuel, 2019, 249: 334-340. |
26 | CLARKE Coby J, TU Wei-Chien, LEVERS Oliver, et al. Green and sustainable solvents in chemical processes[J]. Chemical Reviews, 2018, 118(2): 747-800. |
27 | ANASTAS Paul T, WARNER John C. Green chemistry: Theory and practice [J]. Abstracts of Papers of the American Chemical Society, 1998, 244(48): 19758-19771. |
28 | PRAT Denis, WELLS Andy, HAYLER John, et al. CHEM21 selection guide of classical- and less classical-solvents[J]. Green Chemistry, 2016, 18(1): 288-296. |
29 | MENG Xianzhi, WANG Yunxuan, CONTE Austin J, et al. Applications of biomass-derived solvents in biomass pretreatment–Strategies, challenges, and prospects[J]. Bioresource Technology, 2023, 368: 128280. |
30 | VIOREL Nita, LORENZO Benini, CONSTANTIN Ciupagea, et al. Bioeconomy and sustainability: A potential contribution to the bioeconomy observatory[J]. Biotechnological Engineering, 2013. |
31 | QIU Huanguang, HUANG Jikun, YANG Jun, et al. Bioethanol development in China and the potential impacts on its agricultural economy[J]. Applied Energy, 2010, 87(1): 76-83. |
32 | HESSEL Volker, TRAN Nam Nghiep, ASRAMI Mahdieh Razi, et al. Sustainability of green solvents—Review and perspective[J]. Green Chemistry, 2022, 24: 410-437. |
33 | DUTTA Saikat, DE Sudipta, SAHA Basudeb, et al. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels[J]. Catalysis Science & Technology, 2012, 2(10): 2025. |
34 | WANG Yunyan, LI Mi, WYMAN Charles E, et al. Fast fractionation of technical lignins by organic cosolvents[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6064-6072. |
35 | MENG Xianzhi, PARIKH Aakash, SEEMALA Bhogeswararao, et al. Chemical transformations of poplar lignin during cosolvent enhanced lignocellulosic fractionation process[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 8711-8718. |
36 | LI Jianmei, ZHANG Wenyu, XU Shuguang, et al. The roles of H2O/tetrahydrofuran system in lignocellulose valorization[J]. Frontiers in Chemistry, 2020, 8: 70. |
37 | YAO Fengpei, SHEN Fei, WAN Xue, et al. High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 132: 110107. |
38 | ZHAO Zhimin, MENG Xianzhi, SCHEIDEMANTLE Brent, et al. Cosolvent enhanced lignocellulosic fractionation tailoring lignin chemistry and enhancing lignin bioconversion[J]. Bioresource Technology, 2022, 347: 126367. |
39 | JIN Longming, YU Xue, PENG Chang, et al. Fast dissolution pretreatment of the corn stover in gamma-valerolactone promoted by ionic liquids: Selective delignification and enhanced enzymatic saccharification[J]. Bioresource Technology, 2018, 270: 537-544. |
40 | HORVÁTH István T. Solvents from nature[J]. Green Chemistry, 2008, 10(10): 1024. |
41 | YAO Junwei, XIE Xiaobao, SHI Qingshan. Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system[J]. Renewable Energy, 2021, 177: 853-858. |
42 | SUN Shaoni, CHEN Xue, TAO Yinghua, et al. Pretreatment of Eucalyptus urophylla in γ-valerolactone/dilute acid system for removal of non-cellulosic components and acceleration of enzymatic hydrolysis[J]. Industrial Crops and Products, 2019, 132: 21-28. |
43 | ZHANG Jian, SHEN Wei, COLLINGS Cynthia, et al. Visualizing plant cell wall changes proves the superiority of hydrochloric acid over sulfuric acid catalyzed γ-valerolactone pretreatment[J]. Chemical Engineering Journal, 2021, 412: 128660. |
44 | LI Yijing, LI Hanyin, SUN Shaoni, et al. Evaluating the efficiency of γ-valerolactone/water/acid system on Eucalyptus pretreatment by confocal Raman microscopy and enzymatic hydrolysis for bioethanol production[J]. Renewable Energy, 2019, 134: 228-234. |
45 | TREVORAH Raymond, HARDING Georgia, OTHMAN Maazuza Z. Rapid fractionation of various lignocellulosic biomass using gamma-valerolactone[J]. Bioresource Technology Reports, 2020, 11: 100497. |
46 | KONG Dickson, DOLZHENKO Anton V. Cyrene: A bio-based sustainable solvent for organic synthesis[J]. Sustainable Chemistry and Pharmacy, 2022, 25: 100591. |
47 | STINI Naya A, GKIZIS Petros L, KOKOTOS Christoforos G. Cyrene: A bio-based novel and sustainable solvent for organic synthesis[J]. Green Chemistry, 2022, 24(17): 6435-6449. |
48 | MENG Xianzhi, PU Yunqiao, LI Mi, et al. A biomass pretreatment using cellulose-derived solvent Cyrene[J]. Green Chemistry, 2020, 22(9): 2862-2872. |
49 | MOHAN Mood, SALE Kenneth L, KALB Roland S, et al. Multiscale molecular simulation strategies for understanding the delignification mechanism of biomass in Cyrene[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(33): 11016-11029. |
50 | WILSON Kirsty L, KENNEDY Alan R, MURRAY Jane, et al. Scope and limitations of a DMF bio-alternative within Sonogashira cross-coupling and Cacchi-type annulation[J]. Beilstein Journal of Organic Chemistry, 2016, 12: 2005-2011. |
51 | ZHANG Jinfeng, WHITE Gabrielle B, RYAN Michaela D, et al. Dihydrolevoglucosenone (Cyrene) As a green alternative to N,N-dimethylformamide (DMF) in MOF synthesis[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 7186-7192. |
52 | TUNDO Pietro, Fabio ARICÒ, GAUTHIER Guillaume, et al. Green synthesis of dimethyl isosorbide[J]. ChemSusChem, 2010, 3(5): 566-570. |
53 | YANG Shuang, YANG Xianpeng, MENG Xianzhi, et al. Efficient pretreatment using dimethyl isosorbide as a biobased solvent for potential complete biomass valorization[J]. Green Chemistry, 2022, 24(10): 4082-4094. |
54 | YU Haitao, XUE Zhimin, WANG Yang, et al. Enabling efficient dissolution and fractionation of lignin by renewable and adjustable dimethyl isosorbide-based solvent systems[J]. Separation and Purification Technology, 2023, 306: 122688. |
55 | YU Osbert, YOO Chang Geun, KIM Chang Soo, et al. Understanding the effects of ethylene glycol-assisted biomass fractionation parameters on lignin characteristics using a full factorial design and computational modeling[J]. ACS Omega, 2019, 4(14): 16103-16110. |
56 | SHI Tingting, LIN Jianghai, LI Jiasheng, et al. Pre-treatment of sugarcane bagasse with aqueous ammonia-glycerol mixtures to enhance enzymatic saccharification and recovery of ammonia[J]. Bioresource Technology, 2019, 289: 121628. |
57 | LING Rongxin, WEI Weiqi, JIN Yongcan. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol-water to improve the cellulose enzymatic conversion[J]. Bioresource Technology, 2022, 361: 127723. |
58 | Yanting LYU, CHEN Zhengyu, WANG Huan, et al. Enhancement of glucose production from sugarcane bagasse through an HCl-catalyzed ethylene glycol pretreatment and Tween 80[J]. Renewable Energy, 2022, 194: 495-503. |
59 | XUE Fengyang, LI Wenzhi, AN Shengxin, et al. Ethylene glycol based acid pretreatment of corn stover for cellulose enzymatic hydrolysis[J]. RSC Advances, 2021, 11(23): 14140-14147. |
60 | CHIN Danny Wei Kit, Steven LIM, PANG Yean Ling, et al. Effects of organic solvents on the organosolv pretreatment of degraded empty fruit bunch for fractionation and lignin removal[J]. Sustainability, 2021, 13(12): 6757. |
61 | LIU Yiting, LI Wen, LI Kai, et al. Tailored production of lignin-containing cellulose nanofibrils from sugarcane bagasse pretreated by acid-catalyzed alcohol solutions[J]. Carbohydrate Polymers, 2022, 291: 119602. |
62 | WEI Weiqi, CHEN Zhengyu, WANG Huan, et al. Co-production of fermentable glucose, xylose equivalents, and HBS-lignin from sugarcane bagasse through a FeCl3-catalyzed EG/H2O pretreatment[J]. Industrial Crops and Products, 2021, 165: 113440. |
63 | ZHANG Yongjian, FENG Junfeng, XIAO Zhanping, et al. Highly efficient and selectivefractionation strategy for lignocellulosic biomass with recyclable dioxane/ethylene glycol binary solvent[J]. Industrial Crops and Products, 2020, 144: 112038. |
64 | ALORKU Kingdom, SHEN Chen, LI Yuhang, et al. Biomass-derived 2-methyltetrahydrofuran platform: A focus on precious and non-precious metal-based catalysts for the biorefinery[J]. Green Chemistry, 2022, 24(11): 4201-4236. |
65 | XUE Bailiang, YANG Yang, ZHU Mingqiang, et al. Lewis acid-catalyzed biphasic 2-methyltetrahydrofuran/H2O pretreatment of lignocelluloses to enhance cellulose enzymatic hydrolysis and lignin valorization[J]. Bioresource Technology, 2018, 270: 55-61. |
66 | ZHAN Qiwen, LIN Qixuan, WU Yue, et al. A fractionation strategy of cellulose, hemicellulose, and lignin from wheat straw via the biphasic pretreatment for biomass valorization[J]. Bioresource Technology, 2023, 376: 128887. |
67 | WANG Xiaohui, LI Huiling, LIN Qixuan, et al. Efficient catalytic conversion of dilute-oxalic acid pretreated bagasse hydrolysate to furfural using recyclable ironic phosphates catalysts[J]. Bioresource Technology, 2019, 290: 121764. |
68 | SUN Shaolong, CAO Xuefei, LI Huiling, et al. Simultaneous and efficient production of furfural and subsequent glucose in MTHF/H2O biphasic system via parameter regulation[J]. Polymers, 2020, 12(3): 557. |
69 | ZHANG Qilin, GUO Zongwei, ZENG Xianhai, et al. A sustainable biorefinery strategy: Conversion and fractionation in a facile biphasic system towards integrated lignocellulose valorizations[J]. Renewable Energy, 2021, 179: 351-358. |
70 | PELETEIRO Susana, RASPOLLI GALLETTI Anna Maria, ANTONETTI Claudia, et al. Manufacture of furfural from xylan-containing biomass by acidic processing of hemicellulose-derived saccharides in biphasic media using microwave heating[J]. Journal of Wood Chemistry and Technology, 2018, 38(3): 198-213. |
71 | SWEYGERS Nick, HARRER Johannes, DEWIL Raf, et al. A microwave-assisted process for the in situ production of 5-hydroxymethylfurfural and furfural from lignocellulosic polysaccharides in a biphasic reaction system[J]. Journal of Cleaner Production, 2018, 187: 1014-1024. |
72 | SWEYGERS Nick, DEPUYDT Delphine E C, VAN VUURE Aart Willem, et al. Simultaneous production of 5-hydroxymethylfurfural and furfural from bamboo (Phyllostachys nigra “Boryana”) in a biphasic reaction system[J]. Chemical Engineering Journal, 2020, 386: 123957. |
73 | ZHANG Quan, TAN Xuesong, WANG Wen, et al. Screening solvents based on Hansen solubility parameter theory to depolymerize lignocellulosic biomass efficiently under low temperature[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8678-8686. |
74 | RAPHAEL Anthony P, GARRASTAZU Gabriela, SONVICO Fabio, et al. Formulation design for topical drug and nanoparticle treatment of skin disease[J]. Therapeutic Delivery, 2015, 6(2): 197-216. |
75 | ZHENG Yayue, YU Yuxin, LIN Wenqian, et al. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment[J]. Bioresource Technology, 2021, 325: 124691. |
76 | ZHANG Quan, DAI Chenxing, TAN Xuesong, et al. Biphasic fractionation of lignocellulosic biomass based on the combined action of pretreatment severity and solvent effects on delignification[J]. Bioresource Technology, 2023, 369: 128477. |
77 | ZHANG Quan, TAN Xuesong, WANG Wen, et al. A novel recyclable alkaline biphasic 2-phenoxyethanol/water system for rice straw biorefinery under mild conditions[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(20): 7649-7655. |
78 | ZHANG Quan, DAI Chenxing, ZHANG Jun, et al. Fractionation of lignin from rice straw using an acidified biphasic solvent system[J]. International Journal of Biological Macromolecules, 2023, 230: 123249. |
79 | VALLES A, CAPILLA M, ÁLVAREZ-HORNOS F J, et al. Optimization of alkali pretreatment to enhance rice straw conversion to butanol[J]. Biomass and Bioenergy, 2021, 150: 106131. |
80 | KAWAMATA Yuki, YOSHIKAWA Takuya, KOYAMA Yoshihito, et al. Uniqueness of biphasic organosolv treatment of soft- and hardwood using water/1-butanol co-solvent[J]. Industrial Crops and Products, 2021, 159: 113078. |
81 | SCHMETZ Quentin, TERAMURA Hiroshi, MORITA Kenta, et al. Versatility of a dilute acid/butanol pretreatment investigated on various lignocellulosic biomasses to produce lignin, monosaccharides and cellulose in distinct phases[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11069-11079. |
82 | YAN Lishi, MA Ruoshui, WEI Huaixin, et al. Ruthenium trichloride catalyzed conversion of cellulose into 5-hydroxymethylfurfural in biphasic system[J]. Bioresource Technology, 2019, 279: 84-91. |
83 | BRIENZA Filippo, VAN AELST Korneel, DEVRED François, et al. Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass[J]. Chemical Engineering Journal, 2022, 450: 138179. |
84 | ISLAM Md Khairul, REHMAN Shazia, GUAN Jianyu, et al. Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin[J]. Applied Energy, 2021, 303: 117653. |
85 | MADADI Meysam, SONG Guojie, KARIMI Keikhosro, et al. One-step lignocellulose fractionation using acid/pentanol pretreatment for enhanced fermentable sugar and reactive lignin production with efficient pentanol retrievability[J]. Bioresource Technology, 2022, 359: 127503. |
86 | MADADI Meysam, SHAH Syed Waqas ALI, SUN Chihe, et al. Efficient co-production of xylooligosaccharides and glucose from lignocelluloses by acid/pentanol pretreatment: Synergetic role of lignin removal and inhibitors[J]. Bioresource Technology, 2022, 365: 128171. |
87 | BOZELL Joseph J, BLACK Stuart K, MYERS Michele, et al. Solvent fractionation of renewable woody feedstocks: Organosolv generation of biorefinery process streams for the production of biobased chemicals[J]. Biomass and Bioenergy, 2011, 35(10): 4197-4208. |
88 | BLACK Stuart K, HAMES Bonnie R, MYERS Michele D. Method of separating lignocellulosic material into lignin, cellulose and dissolved sugars: US5730837A [P]. 2023-08-24. |
89 | BRUDECKI Grzegorz, CYBULSKA Iwona, ROSENTRATER Kurt, et al. Optimization of clean fractionation processing as a pre-treatment technology for prairie cordgrass[J]. Bioresource Technology, 2012, 107: 494-504. |
90 | CHEN Jiazhao, TAN Xuesong, MIAO Changlin, et al. A one-step deconstruction-separation organosolv fractionation of lignocellulosic biomass using acetone/phenoxyethanol/water ternary solvent system[J]. Bioresource Technology, 2021, 342: 125963. |
91 | LI Wuhuan, TAN Xuesong, MIAO Changlin, et al. Mild organosolv pretreatment of sugarcane bagasse with acetone/phenoxyethanol/water for enhanced sugar production[J]. Green Chemistry, 2023, 25(3): 1169-1178. |
[1] | HE Shikun, ZHANG Wenhao, FENG Junfeng, PAN Hui. Directional conversion of lignocellulosic biomass to methyl levulinate over supported metal solid acid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3042-3050. |
[2] | PU Fulong, WU Shangwei, ZHENG Yingling, ZHENG Yuyi, HOU Xuedan. Effect of lignin extracted by lactic acid-based deep eutectic solvent from rice straw on cellulase hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4937-4945. |
[3] | Hao LI, Wanru XING, Guochao XU, Ye NI. Combinatorial pretreatment of straw with DES and sodium hypochlorite and its application in butanol fermentation [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5211-5218. |
[4] | TANG Ruiqi, XIONG Liang, CHENG Cheng, ZHAO Xinqing, BAI Fengwu. Progress of research on construction and optimization of recombinant Saccharomyces cerevisiae strains for cellulosic ethanol production [J]. Chemical Industry and Engineering Progress, 2018, 37(08): 3119-3128. |
[5] | TONG Yujun, SHEN Benxian, LIU Jichang, HUANG Hengwen. Structural characterization and determination of solubility parameters of Oman vacuum residue based on column chromatography separation [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2547-2556. |
[6] | WANG Wei, YAN Xiuyi, ZHANGLei, ZHOU Jinghui . Research progress of hydrothermal liquefaction of lignocellulosic biomass [J]. Chemical Industry and Engineering Progree, 2016, 35(02): 453-462. |
[7] | HUANG Weili,LI Huiping,HU Zizhao,WANG Jing,LIU Kai. Solvent selection in solution polymerization for the synthesis of oil-soluble drag reduction agent and the characterization of polymer performance [J]. Chemical Industry and Engineering Progree, 2012, 31(10): 2295-2299. |
[8] | YU Qiang,ZHUANG Xinshu,YUAN Zhenhong,QI Wei,WANG Qiong,TAN Xuesong,. Research progress on fuel and chemicals production from lignocellulose biomass [J]. Chemical Industry and Engineering Progree, 2012, 31(04): 784-791. |
[9] |
HUANG Min1,2,ZENG Chuyi1,LI Jiding2,CHEN Jian2.
Pervaporation membrane materials and membrane reactor for cyclohexane oxidation (Ⅰ) Selection of membrane materials [J]. Chemical Industry and Engineering Progree, 2010, 29(4): 616-. |
[10] | YU Qiang1,2,ZHUANG Xingshu1,YUAN Zhenhong1,QI Wei1,WANG Wen1,2,WANG Qiong1,YANG Lifang3,TAN Xuesong1. Pretreatment of lignocellulosic biomass with liquid hot water [J]. Chemical Industry and Engineering Progree, 2010, 29(11): 2177-. |
[11] | XU Qingli,LAN Ping,SUI Miao,ZHOU Ming,YAN Yongjie. Progress in the hydrolysis of lignocellulosic biomass for fuel-thanol production [J]. Chemical Industry and Engineering Progree, 2009, 28(11): 1906-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |