Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5751-5763.DOI: 10.16085/j.issn.1000-6613.2024-1359
• Industrial catalysis • Previous Articles
ZHANG Yating1,2(
), MA Xiaomei1, LI Keke1, JIA Jia1, CHEN Meng1, DAI Liang1, GAO Xitong1
Received:2024-08-19
Revised:2024-11-20
Online:2025-11-10
Published:2025-10-25
Contact:
ZHANG Yating
张亚婷1,2(
), 马小梅1, 李可可1, 贾嘉1, 陈萌1, 代亮1, 高希桐1
通讯作者:
张亚婷
作者简介:张亚婷(1972—),女,博士,教授,博士生导师,研究方向为功能炭材料与纳米能源材料制备与应用、二氧化碳光电还原和氧还原催化剂、锂(钠)离子电池和超级电容器电极材料。E-mail:zhangyt@xust.edu.cn。
基金资助:CLC Number:
ZHANG Yating, MA Xiaomei, LI Keke, JIA Jia, CHEN Meng, DAI Liang, GAO Xitong. Recent advances on CDs/g-C3N4 heterostructure: Construction and photocatalytic application[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5751-5763.
张亚婷, 马小梅, 李可可, 贾嘉, 陈萌, 代亮, 高希桐. CDs/g-C3N4异质结构筑及其在光催化领域的应用[J]. 化工进展, 2025, 44(10): 5751-5763.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1359
| 合成方法 | 优点 | 缺点 |
|---|---|---|
| 机械混合法 | 碳点结构完整 | 碳点容易脱落、分布不均匀 |
| 超声波辅助法 | 碳点分布均匀、负载率可调 | 石墨相氮化碳形貌发生变化 |
| 静电自组装法 | 碳点结构完整、分布均匀 | 适用于电荷相反的碳点和石墨相氮化碳 |
| 煅烧法 | 碳点与石墨相氮化碳结合紧密 | 碳点电子和光学性质减弱 |
| 水热法 | 碳点结构完整且与石墨相氮化碳结合紧密 | 需要高压高温条件 |
| 合成方法 | 优点 | 缺点 |
|---|---|---|
| 机械混合法 | 碳点结构完整 | 碳点容易脱落、分布不均匀 |
| 超声波辅助法 | 碳点分布均匀、负载率可调 | 石墨相氮化碳形貌发生变化 |
| 静电自组装法 | 碳点结构完整、分布均匀 | 适用于电荷相反的碳点和石墨相氮化碳 |
| 煅烧法 | 碳点与石墨相氮化碳结合紧密 | 碳点电子和光学性质减弱 |
| 水热法 | 碳点结构完整且与石墨相氮化碳结合紧密 | 需要高压高温条件 |
| [1] | TURNER John A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. |
| [2] | CHU Steven, MAJUMDAR Arun. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
| [3] | LEWIS Nathan S, NOCERA Daniel G. Powering the planet: Chemical challenges in solar energy utilization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(43): 15729-15735. |
| [4] | GAO Zhuyan, LUO Nengchao, HUANG Zhipeng, et al. Controlling radical intermediates in photocatalytic conversion of low-carbon-number alcohols[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(18): 6188-6202. |
| [5] | TACHIBANA Yasuhiro, VAYSSIERES Lionel, DURRANT James R. Artificial photosynthesis for solar water-splitting[J]. Nature Photonics, 2012, 6: 511-518. |
| [6] | QU Yongquan, DUAN Xiangfeng. Progress, challenge and perspective of heterogeneous photocatalysts[J]. Chemical Society Reviews, 2013, 42(7): 2568-2580. |
| [7] | ZHOU Minghua, YU Jiaguo, LIU Shengwei, et al. Effects of calcination temperatures on photocatalytic activity of SnO2/TiO2 composite films prepared by an EPD method[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 1141-1148. |
| [8] | ZENG Yunxiong, LIU Chengbin, WANG Longlu, et al. A three-dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(48): 19003-19010. |
| [9] | LIU Runxue, YANG Wanliang, HE Guiwei, et al. Ag-modified g-C3N4 prepared by a one-step calcination method for enhanced catalytic efficiency and stability[J]. ACS Omega, 2020, 5(31): 19615-19624. |
| [10] | GREEN Martin A, BREMNER Stephen P. Energy conversion approaches and materials for high-efficiency photovoltaics[J]. Nature Materials, 2017, 16(1): 23-34. |
| [11] | 宋亚丽, 李紫燕, 杨彩荣, 等. 非金属元素掺杂石墨相氮化碳光催化材料的研究进展[J]. 化工进展, 2023, 42(10): 5299-5309. |
| SONG Yali, LI Ziyan, YANG Cairong, et al. Research progress on non-metal element-doped graphitic carbon nitride photocatalytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5299-5309. | |
| [12] | Wee-Jun ONG, TAN Lling-Lling, Yun Hau NG, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
| [13] | YIN Shengming, HAN Jianyu, ZHOU Tianhua, et al. Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications[J]. Catalysis Science & Technology, 2015, 5(12): 5048-5061. |
| [14] | SHE Xiaojie, XU Hui, XU Yuanguo, et al. Exfoliated graphene-like carbon nitride in organic solvents: Enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+ [J]. Journal of Materials Chemistry A, 2014, 2(8): 2563-2570. |
| [15] | Jingxiang LOW, YU Jiaguo, JARONIEC Mietek, et al. Heterojunction photocatalysts[J]. Advanced Materials, 2017, 29(20): 1601694. |
| [16] | TAO Songyuan, FENG Tanglue, ZHENG Chengyu, et al. Carbonized polymer dots: A brand new perspective to recognize luminescent carbon-based nanomaterials[J]. The Journal of Physical Chemistry Letters, 2019, 10(17): 5182-5188. |
| [17] | KANG Chunyuan, TAO Songyuan, YANG Fan, et al. Aggregation and luminescence in carbonized polymer dots[J]. Aggregate, 2022, 3(2): e169. |
| [18] | 段丽媛, 李国强, 张舒婷, 等. 二次等温热缩聚改性对g-C3N4光催化剂性能的影响[J]. 化工进展, 2021, 40(6): 3389-3400. |
| DUAN Liyuan, LI Guoqiang, ZHANG Shuting, et al. Effect of secondary isothermal condensation modification on the performance of g-C3N4 photocatalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3389-3400. | |
| [19] | 付涛, 李立, 高莉宁, 等. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
| FU Tao, LI Li, GAO Lining, et al. Cement-based boron-doped graphite phase carbon nitride material degrades NO[J]. Chemical Industry and Engineering Progress, 2024, 43(8): 4403-4410. | |
| [20] | ZHU Shoujun, SONG Yubin, ZHAO Xiaohuan, et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective[J]. Nano Research, 2015, 8(2): 355-381. |
| [21] | KHAN Javid, SUN Yanyan, HAN Lei. A comprehensive review on graphitic carbon nitride for carbon dioxide photoreduction[J]. Small Methods, 2022, 6(12): 2201013. |
| [22] | 刘广涵, 张斌. 半导体光催化材料研究进展[J]. 现代盐化工, 2019, 46(2): 43-44. |
| LIU Guanghan, ZHANG Bin. Research progress of semiconductor photocatalytic materials[J]. Modern Salt and Chemical Industry, 2019, 46(2): 43-44. | |
| [23] | HASSAAN Mohamed A, EL-NEMR Mohamed A, ELKATORY Marwa R, et al. Principles of photocatalysts and their different applications: A review[J]. Topics in Current Chemistry (Cham), 2023, 381(6): 31. |
| [24] | GAO Ming, SUN Linlin, MA Changchang, et al. Constructed Z-scheme g-C3N4/Ag3VO4/rGO photocatalysts with multi-interfacial electron-transfer paths for high photoreduction of CO2 [J]. Inorganic Chemistry, 2021, 60(3): 1755-1766. |
| [25] | 张超, 汪建新, 杨万丽. 一维/二维PANI/g-C3N4复合材料的制备及其光催化性能研究[J]. 广东化工, 2023, 50(2): 7-10. |
| ZHANG Chao, WANG Jianxin, YANG Wanli. Preparation and photocatalytic properties of one-dimensional/two-dimensional PANI/g-C3N4 composites[J]. Guangdong Chemical Industry, 2023, 50(2): 7-10. | |
| [26] | 牛凤延, 何齐升, 李德恒, 等. g-C3N4基材料光催化分解水产氢的研究进展[J]. 中国陶瓷, 2023, 59(1): 13-20. |
| NIU Fengyan, HE Qisheng, LI Deheng, et al. Research progress in photocatalytic decomposition of hydrogen in aquatic products by g-C3N4 based materials[J]. China Ceramics, 2023, 59(1): 13-20. | |
| [27] | HAN Mei, LU Siyu, QI Fei, et al. Carbon dots-implanted graphitic carbon nitride nanosheets for photocatalysis: Simultaneously manipulating carrier transport in inter- and intralayers[J]. Solar RRL, 2020, 4(4): 1900517. |
| [28] | ZHOU Hailong, QU Yongquan, ZEID Tahani, et al. Towards highly efficient photocatalysts using semiconductor nanoarchitectures[J]. Energy & Environmental Science, 2012, 5(5): 6732-6743. |
| [29] | TU Biyang, CHE Ruijie, WANG Fenghe, et al. Switching heterojunction system from Type-Ⅱ to S-scheme for efficient photocatalytic degradation of ciprofloxacin[J]. Separation and Purification Technology, 2024, 345: 127323. |
| [30] | DHAKSHINAMOORTHY Amarajothi, LI Zhaohui, YANG Sihai, et al. Metal-organic framework heterojunctions for photocatalysis[J]. Chemical Society Reviews, 2024, 53(6): 3002-3035. |
| [31] | LI Xin, YU Jiaguo, JARONIEC Mietek, et al. Cocatalysts for selective photoreduction of CO2 into solar fuels[J]. Chemical Reviews, 2019, 119(6): 3962-4179. |
| [32] | XU Quanlong, ZHANG Liuyang, YU Jiaguo, et al. Direct Z-scheme photocatalysts: Principles, synthesis, and applications[J]. Materials Today, 2018, 21(10): 1042-1063. |
| [33] | XU Quanlong, ZHANG Liuyang, CHENG Bei, et al. S-scheme heterojunction photocatalyst[J]. Chem, 2020, 6(7): 1543-1559. |
| [34] | 皮若冰, 周云龙. 直接Z型异质结体系光催化还原二氧化碳研究进展[J]. 化工学报, 2024, 75(10): 3379-3400. |
| PI Ruobing, ZHOU Yunlong. Research progress on photocatalytic reduction of carbon dioxide in direct Z-scheme heterojunctions system[J]. CIESC Journal, 2024, 75(10): 3379-3400. | |
| [35] | KATSUMATA Hideyuki, TACHI Yusuke, SUZUKI Tohru, et al. Z-scheme photocatalytic hydrogen production over WO3/g-C3N4 composite photocatalysts[J]. Royal Society of Chemistry Advances, 2014, 4(41): 21405-21409. |
| [36] | WANG Libo, CHENG Bei, ZHANG Liuyang, et al. In situ irradiated XPS investigation on S-scheme TiO2@ZnIn2S4 photocatalyst for efficient photocatalytic CO2 reduction[J]. Small, 2021, 17(41): 2103447. |
| [37] | WANG Yiou, GODIN Robert, DURRANT James R, et al. Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions[J]. Angewandte Chemie International Edition, 2021, 60(38): 20811-20816. |
| [38] | 何源, 许磊, 夏仡, 等. 碳量子点修饰g-C3N4/SnO2复合材料光催化性能[J]. 化工进展, 2021, 40(2): 908-916. |
| HE Yuan, XU Lei, XIA Yi, et al. Photocatalytic performance of carbon quantum dots modified g-C3N4/SnO2 composites[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 908-916. | |
| [39] | YUAN Aili, LEI Hua, XI Fengna, et al. Graphene quantum dots decorated graphitic carbon nitride nanorods for photocatalytic removal of antibiotics[J]. Journal of Colloid and Interface Science, 2019, 548: 56-65. |
| [40] | FENG Caixia, ZHANG Xiaodong, JIN Huige, et al. Integrating carbon vacancy modified carbon quantum dots with carbon nitride for efficient photocatalytic CO2 reduction to syngas with tunable hydrogen to carbon monoxide ratio[J]. Carbon, 2023, 203: 671-685. |
| [41] | HU Zifei, SHI Dan, WANG Guohong, et al. Carbon dots incorporated in hierarchical macro/mesoporous g-C3N4/TiO2 as an all-solid-state Z-scheme heterojunction for enhancement of photocatalytic H2 evolution under visible light[J]. Applied Surface Science, 2022, 601: 154167. |
| [42] | MIAO Xuli, YUE Xiaoyang, JI Zhenyuan, et al. Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photocatalyst with improved visible light photocatalytic activity and mechanism insight[J]. Applied Catalysis B: Environmental, 2018, 227: 459-469. |
| [43] | ZHANG Gong, JI Qinghua, WU Zhang, et al. Facile "spot-heating" synthesis of carbon dots/carbon nitride for solar hydrogen evolution synchronously with contaminant decomposition[J]. Advanced Functional Materials, 2018, 28(14): 1706462. |
| [44] | LIU Jinyuan, XU Hui, XU Yuanguo, et al. Graphene quantum dots modified mesoporous graphite carbon nitride with significant enhancement of photocatalytic activity[J]. Applied Catalysis B: Environmental, 2017, 207: 429-437. |
| [45] | ZHANG Shuaiyang, GAO Mengjie, ZHAI Yunpu, et al. Which kind of nitrogen chemical states doped carbon dots loaded by g-C3N4 is the best for photocatalytic hydrogen production[J]. Journal of Colloid and Interface Science, 2022, 622: 662-674. |
| [46] | SENG RU xuan, TAN Lling-Lling, LEE W P Cathie, et al. Nitrogen-doped carbon quantum dots-decorated 2D graphitic carbon nitride as a promising photocatalyst for environmental remediation: A study on the importance of hybridization approach[J]. Journal of Environmental Management, 2020, 255: 109936. |
| [47] | AI Lin, SHI Run, YANG Jie, et al. Efficient combination of G-C3N4 and CDs for enhanced photocatalytic performance: A review of synthesis, strategies, and applications[J]. Small, 2021, 17(48): 2007523. |
| [48] | MIAO Xuli, JI Zhenyuan, WU Jiajia, et al. g-C3N4/AgBr nanocomposite decorated with carbon dots as a highly efficient visible-light-driven photocatalyst[J]. Journal of Colloid and Interface Science, 2017, 502: 24-32. |
| [49] | QIAN Jiajia, YAN Jing, SHEN Chao, et al. Graphene quantum dots-assisted exfoliation of graphitic carbon nitride to prepare metal-free zero-dimensional/two-dimensional composite photocatalysts[J]. Journal of Materials Science, 2018, 53(17): 12103-12114. |
| [50] | Wee-Jun ONG, PUTRI Lutfi Kurnianditia, TAN Yoong-Chuen, et al. Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: A combined experimental and first-principles DFT study[J]. Nano Research, 2017, 10(5): 1673-1696. |
| [51] | FANG Shun, XIA Yang, Kangle LYU, et al. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4 [J]. Applied Catalysis B: Environmental, 2016, 185: 225-232. |
| [52] | MOU Zhigang, LU Cheng, YU Kevin, et al. Chemical interaction in nitrogen-doped graphene quantum dots/graphitic carbon nitride heterostructures with enhanced photocatalytic H2 evolution[J]. Energy Technology, 2019, 7(3): 1800589 |
| [53] | HE Huijuan, HUANG Langhuan, ZHONG Zijun, et al. Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity[J]. Applied Surface Science, 2018, 441: 285-294. |
| [54] | JING Liquan, XU Yuanguo, XIE Meng, et al. Piezo-photocatalysts in the field of energy and environment: Designs, applications, and prospects[J]. Nano Energy, 2023, 112: 108508. |
| [55] | LIANG Jinnan, YANG Xiaohong, FU Haitao, et al. Integrating optimal amount of carbon dots in g-C3N4 for enhanced visible light photocatalytic H2 evolution[J]. International Journal of Hydrogen Energy, 2022, 47(41): 18032-18043. |
| [56] | WANG Fengliang, CHEN Ping, FENG Yiping, et al. Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J]. Applied Catalysis B: Environmental, 2017, 207: 103-113. |
| [57] | WANG Fengliang, WANG Yingfei, WU Yuliang, et al. Template-free synthesis of oxygen-containing ultrathin porous carbon quantum dots/g-C3N4 with superior photocatalytic activity for PPCPs remediation[J]. Environmental Science: Nano, 2019, 6(8): 2565-2576. |
| [58] | FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
| [59] | STYRING Stenbjörn. Artificial photosynthesis for solar fuels[J]. Faraday Discussions, 2012, 155(0): 357-376. |
| [60] | GU Yongpan, SUN Lixiang, FENG Haoqiang, et al. Novel up-conversion N, S co-doped carbon dots/g-C3N4 photocatalyst for enhanced photocatalytic hydrogen evolution under visible and near-infrared light[J]. International Journal of Hydrogen Energy, 2023, 48(15): 5976-5987. |
| [61] | LIU Wenliang, LIU Guodong, SHI Nan, et al. Carbon quantum dot-modified and chloride-doped ordered macroporous graphitic carbon nitride composites for hydrogen evolution[J]. ACS Applied Nano Materials, 2020, 3(12): 12188-12197. |
| [62] | CHEN Xiaobo, SHEN Shaohua, GUO Liejin, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews, 2010, 110(11): 6503-6570. |
| [63] | 李勇, 高佳琦, 杜超, 等. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
| LI Yong, GAO Jiaqi, DU Chao, et al. Construction of Ni@C@TiO2 core-shell dual-heterojunctions for advanced photo-thermal catalytic hydrogen generation[J]. CIESC Journal, 2023, 74(6): 2458-2467. | |
| [64] | NAHAR Samsun, ZAIN M F M, KADHUM Abdul Amir H, et al. Advances in photocatalytic CO2 reduction with water: A review[J]. Materials, 2017, 10(6): 629. |
| [65] | HU Xing, GUO Ruitang, LIN Zhidong, et al. Construction of carbon dot-modified g-C3N4/BiOIO3 Z-scheme heterojunction for boosting photocatalytic CO2 reduction under full spectrum light[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(34): 11143-11153. |
| [66] | CHANG Xiaoxia, WANG Tuo, GONG Jinlong. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
| [67] | 党永强, 李博妮, 李可可, 等. 铁基催化剂光催化还原CO2研究进展[J]. 化工学报, 2021, 72(10): 5016-5027. |
| DANG Yongqiang, LI Boni, LI Keke, et al. Research progress in photocatalytic reduction of CO2 with iron-based catalysts[J]. CIESC Journal, 2021, 72(10): 5016-5027. | |
| [68] | SIMA J, HASAL P. Photocatalytic degradation of textile dyes in a TiO2/UV system[J]. Chemical Engineering Transactions, 2013, 32: 79-84. |
| [69] | HICKMAN Renae, WALKER Eric, CHOWDHURY Sanchari. TiO2-PDMS composite sponge for adsorption and solar mediated photodegradation of dye pollutants[J]. Journal of Water Process Engineering, 2018, 24: 74-82. |
| [70] | HUANG Gang, ZENG Danlin, KE Ping, et al. Corncob carbon modified g-C3N4 catalysts with improved photocatalytic performance under visible light[J]. Ceramics International, 2024, 50(9): 14077-14087. |
| [71] | LUO Juhua, LIU Xing, GU Jieliang, et al. Construction of novel g-C3N4/β-FeOOH Z-Scheme heterostructure photocatalyst modified with carbon quantum dots for efficient degradation of RhB[J]. Journal of Materials Science & Technology, 2024, 181: 11-19. |
| [72] | FANG Xiaoyu, TANG Yanqun, MA Yujuan, et al. Ultralong-lived triplet excitons of room-temperature phosphorescent carbon dots located on g-C3N4 to boost photocatalysis[J]. Science China Materials, 2023, 66(2): 664-671. |
| [73] | 张佳颖, 王聪, 王雅君. CNT-Co/Bi2O3催化剂光催化协同过硫酸盐活化高效降解四环素[J]. 化工学报, 2024, 75(9): 3163-3175. |
| ZHANG Jiaying, WANG Cong, WANG Yajun. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline[J]. CIESC Journal, 2024, 75(9): 3163-3175. | |
| [74] | MANININH Chanthavong. 光催化纳米颗粒研究进展[J]. 化纤与纺织技术, 2020, 49(11): 34-36, 74. |
| MANININH Chanthavong. Research progress of photocatalytic nanoparticles[J]. Chemical Fiber & Textile Technology, 2020, 49(11): 34-36, 74. | |
| [75] | YANG Jiaomei, TIAN Shufang, SONG Zhen, et al. Recent advances in sorption-based photocatalytic materials for the degradation of antibiotics[J]. Coordination Chemistry Reviews, 2025, 523: 216257. |
| [1] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [2] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [3] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [4] | ZHANG Wenjing, HUANG Zhixin, LI Shiteng, DENG Shuai, LI Shuangjun. Biomass carbon aerogels for CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5018-5032. |
| [5] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [6] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [7] | CHEN Siming, LIU Jingchao, ZHONG Zhixuan, ZHANG Xinzhu, ZHU Tianhao, PENG Yiqing, YOU Sai, WANG Yikai, YUAN Jiajun, ZHANG Yongchun. Development and application of deep eutectic solvents in carbon dioxide capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5377-5390. |
| [8] | CAO Jiangfei, LEI Xiaotong, HUANG Zhiyi, HUANG Jiankai, CHEN Fan, YANG Pianpian, XIE Chunsheng. Preparation of iron-nitrogen doped carbon microspheres and their activation for PS degradation of rhodamine B [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5406-5415. |
| [9] | ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431. |
| [10] | HUANG Ke’er, LIU Jiahao, LI Haoming, ZHOU Tianhang, GAO Jinsen, LAN Xingying. Self-diffusion coefficients in the process of carbon capture by amine solvents based on molecular dynamics simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4352-4364. |
| [11] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [12] | LI Haodong, SHEN Shengqiang, CHEN Liang. Numerical simulation on ammonia-hydrogen combustion exhaust heat utilization coupling ammonia cracking process for hydrogen production [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4443-4453. |
| [13] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [14] | WANG Shuai, QIAN Xiangchen, ZHANG Leiqi, WU Qiliang, LIU Min. Degradation mechanism of key components in proton exchange membrane fuel cells and proton exchange membrane electrolysis cells [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3804-3815. |
| [15] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |