Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5730-5750.DOI: 10.16085/j.issn.1000-6613.2024-1350
• Industrial catalysis • Previous Articles
WU Enxi(
), DAI Yi, ZHANG Yaoyuan(
), WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng(
)
Received:2024-08-19
Revised:2024-10-29
Online:2025-11-10
Published:2025-10-25
Contact:
ZHANG Yaoyuan, LI Hansheng
武恩喜(
), 代怡, 张耀远(
), 吴芹, 史大昕, 陈康成, 黎汉生(
)
通讯作者:
张耀远,黎汉生
作者简介:武恩喜(1997—),男,硕士研究生,研究方向为丙烷脱氢。E-mail:3120211264@bit.edu.cn。
基金资助:CLC Number:
WU Enxi, DAI Yi, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Advances of Co-based catalysts in non-oxidative dehydrogenation of light alkanes[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5730-5750.
武恩喜, 代怡, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 低碳烷烃无氧脱氢Co基催化剂的研究进展[J]. 化工进展, 2025, 44(10): 5730-5750.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-1350
| 催化剂组成 | 反应温度/℃ | 原料组成(体积比) | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
|---|---|---|---|---|---|---|
| CoAl2O4 | 600 | C3H8∶N2=1∶19 | 0.2 | 39 | 80 | [ |
| Co/S-1 | 550 | C3H8∶N2=1∶4 | 0.1 | 34.4 | 95.3 | [ |
| Co/ZSM-5 | 550 | C3H8∶N2=1∶4 | 0.1 | 25 | 68.4 | [ |
| Co/HMS | 550 | C3H8∶N2=1∶4 | 0.1 | 3.7 | 92.40 | [ |
| Co/SO42-/Al2O3 | 600 | C3H8∶He=1∶9 | 0.5 | 11 | 91.4 | [ |
| Co/Al2O3-NS(纳米片) | 580 | C3H8∶N2=1∶19 | 0.2 | 35 | 93.5 | [ |
| Co/Al2O3-NR(纳米棒) | 580 | C3H8∶N2=1∶19 | 0.2 | 40.2 | 97.5 | [ |
| Co-Silicalite-1 | 550 | C3H8∶H2∶Ar=1∶1∶38 | 0.1 | 19.9 | 99.3 | [ |
| Co3O4/Silicalite-1 | 550 | C3H8∶H2∶Ar=1∶1∶38 | 0.1 | 16.6 | 93.1 | [ |
| Co/Al2O3-NP(纳米板) | 600 | C3H8∶He=1∶10 | 0.3 | 41 | 70 | [ |
| Co/Al2O3-NS | 600 | C3H8∶He=1∶10 | 0.3 | 31 | 81 | [ |
| Co/Al2O3-NF(纳米纤维) | 600 | C3H8∶He=1∶10 | 0.3 | 37 | 77 | [ |
| Co@S-1 | 600 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 20 | 96 | [ |
| Co@S-1-steam | 600 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 35 | 95 | [ |
| Zn1Co1/NC | 600 | C3H8∶H2∶He=1∶1∶18 | 0.1 | 20 | 95 | [ |
| Co1/NC | 600 | C3H8∶H2∶He=1∶1∶18 | 0.1 | 5 | 90 | [ |
| Co-Al2O3 | 590 | C3H8∶H2∶N2=5∶4∶16 | 0.15 | 24.7 | 90.6 | [ |
| 5Si-Co-Al2O3 | 590 | C3H8∶H2∶N2=5∶4∶16 | 0.15 | 25.3 | 91.8 | [ |
| 10SiCo-Al2O3 | 590 | C3H8∶H2∶N2=5∶4∶16 | 0.15 | 23 | 96 | [ |
| Co/Al2O3 | 550 | C3H8∶Ar=1∶19 | 0.2 | 30 | 83 | [ |
| Co/Al2O3 | 600 | C3H8∶N2=1∶2 | 2.0 | 44.7 | 93 | [ |
| CoN@OCNT(碳纳米管) | 570 | C3H8∶He=2.4∶97.6 | 0.2 | 20 | 98 | [ |
| Co/NC | 450 | C3H8∶N2=1∶9 | 1.0 | 30 | 45 | [ |
| Co-Sn/NC | 450 | C3H8∶N2=1∶9 | 1.0 | 15 | 80 | [ |
| CoO x @MFI | 600 | C3H8∶N2=1∶9 | 0.2 | 59 | 93 | [ |
| Co3O4/MFI | 600 | C3H8∶N2=1∶9 | 0.2 | 28 | 90 | [ |
| Co-acac@S-1 | 600 | C3H8∶N2=1∶19 | 0.3 | 47 | 94.7 | [ |
| Co/NC | 550 | C3H8∶N2=2∶3 | 0.05 | 7.2 | 91.9 | [ |
| CoFe/Al2O3 | 590 | C3H8∶N2=4∶21 | 0.1 | 22.4 | 97.3 | [ |
| Co-mSiO2 | 600 | C3H8∶He=1∶9 | 0.5 | 36 | 94 | [ |
| CoV/Al2O3 | 550 | C3H8∶Ar=1∶19 | 0.05 | 23 | 97 | [ |
| Co/Ti-ZSM-5 | 590 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 30 | 96 | [ |
| Co@Si-BEA | 590 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 25 | 93 | [ |
| SmCoO3/Al2O3 | 600 | C3H8∶H2∶N2=8∶7∶35 | 0.4 | 25 | 94 | [ |
| Co@S-1 | 600 | C3H8∶He=1∶9 | 0.05 | 40 | 90 | [ |
| Co-N-C/SiO2 | 600 | C3H8∶N2=1∶9 | 0.2 | 12 | 95 | [ |
| CoAl | 600 | C3H8∶N2=1∶9 | 0.2 | 47 | 95 | [ |
| Co@NC-ZIF | 600 | C3H8∶N2=1∶9 | 0.2 | 29 | 80 | [ |
| Co/SiO2 | 550 | C3H8∶N2=1∶3.2 | 0.15 | 25 | 95 | [ |
| CoO x @NC/S-1 | 520 | C3H8∶N2=5∶19 | 0.1 | 11 | 97 | [ |
| Co-S-1-Ar | 550 | C3H8∶H2∶Ar=1∶1:38 | 0.05 | 23 | 95 | [ |
| H-Co@S-1 | 600 | C3H8∶N2=1∶19 | 0.2 | 41.3 | 96.3 | [ |
| CoSiBeta | 600 | C3H8∶N2=1∶19 | 0.3 | 58.8 | 98.4 | [ |
| Co@S-1(EDA) | 600 | C3H8∶Ar=5∶16.5 | 0.32 | 30 | 92 | [ |
| Co-Zr/SiO2 | 550 | C3H8∶Ar=3∶97 | 0.5 | 8.7 | 96 | [ |
| 催化剂组成 | 反应温度/℃ | 原料组成(体积比) | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
|---|---|---|---|---|---|---|
| CoAl2O4 | 600 | C3H8∶N2=1∶19 | 0.2 | 39 | 80 | [ |
| Co/S-1 | 550 | C3H8∶N2=1∶4 | 0.1 | 34.4 | 95.3 | [ |
| Co/ZSM-5 | 550 | C3H8∶N2=1∶4 | 0.1 | 25 | 68.4 | [ |
| Co/HMS | 550 | C3H8∶N2=1∶4 | 0.1 | 3.7 | 92.40 | [ |
| Co/SO42-/Al2O3 | 600 | C3H8∶He=1∶9 | 0.5 | 11 | 91.4 | [ |
| Co/Al2O3-NS(纳米片) | 580 | C3H8∶N2=1∶19 | 0.2 | 35 | 93.5 | [ |
| Co/Al2O3-NR(纳米棒) | 580 | C3H8∶N2=1∶19 | 0.2 | 40.2 | 97.5 | [ |
| Co-Silicalite-1 | 550 | C3H8∶H2∶Ar=1∶1∶38 | 0.1 | 19.9 | 99.3 | [ |
| Co3O4/Silicalite-1 | 550 | C3H8∶H2∶Ar=1∶1∶38 | 0.1 | 16.6 | 93.1 | [ |
| Co/Al2O3-NP(纳米板) | 600 | C3H8∶He=1∶10 | 0.3 | 41 | 70 | [ |
| Co/Al2O3-NS | 600 | C3H8∶He=1∶10 | 0.3 | 31 | 81 | [ |
| Co/Al2O3-NF(纳米纤维) | 600 | C3H8∶He=1∶10 | 0.3 | 37 | 77 | [ |
| Co@S-1 | 600 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 20 | 96 | [ |
| Co@S-1-steam | 600 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 35 | 95 | [ |
| Zn1Co1/NC | 600 | C3H8∶H2∶He=1∶1∶18 | 0.1 | 20 | 95 | [ |
| Co1/NC | 600 | C3H8∶H2∶He=1∶1∶18 | 0.1 | 5 | 90 | [ |
| Co-Al2O3 | 590 | C3H8∶H2∶N2=5∶4∶16 | 0.15 | 24.7 | 90.6 | [ |
| 5Si-Co-Al2O3 | 590 | C3H8∶H2∶N2=5∶4∶16 | 0.15 | 25.3 | 91.8 | [ |
| 10SiCo-Al2O3 | 590 | C3H8∶H2∶N2=5∶4∶16 | 0.15 | 23 | 96 | [ |
| Co/Al2O3 | 550 | C3H8∶Ar=1∶19 | 0.2 | 30 | 83 | [ |
| Co/Al2O3 | 600 | C3H8∶N2=1∶2 | 2.0 | 44.7 | 93 | [ |
| CoN@OCNT(碳纳米管) | 570 | C3H8∶He=2.4∶97.6 | 0.2 | 20 | 98 | [ |
| Co/NC | 450 | C3H8∶N2=1∶9 | 1.0 | 30 | 45 | [ |
| Co-Sn/NC | 450 | C3H8∶N2=1∶9 | 1.0 | 15 | 80 | [ |
| CoO x @MFI | 600 | C3H8∶N2=1∶9 | 0.2 | 59 | 93 | [ |
| Co3O4/MFI | 600 | C3H8∶N2=1∶9 | 0.2 | 28 | 90 | [ |
| Co-acac@S-1 | 600 | C3H8∶N2=1∶19 | 0.3 | 47 | 94.7 | [ |
| Co/NC | 550 | C3H8∶N2=2∶3 | 0.05 | 7.2 | 91.9 | [ |
| CoFe/Al2O3 | 590 | C3H8∶N2=4∶21 | 0.1 | 22.4 | 97.3 | [ |
| Co-mSiO2 | 600 | C3H8∶He=1∶9 | 0.5 | 36 | 94 | [ |
| CoV/Al2O3 | 550 | C3H8∶Ar=1∶19 | 0.05 | 23 | 97 | [ |
| Co/Ti-ZSM-5 | 590 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 30 | 96 | [ |
| Co@Si-BEA | 590 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 25 | 93 | [ |
| SmCoO3/Al2O3 | 600 | C3H8∶H2∶N2=8∶7∶35 | 0.4 | 25 | 94 | [ |
| Co@S-1 | 600 | C3H8∶He=1∶9 | 0.05 | 40 | 90 | [ |
| Co-N-C/SiO2 | 600 | C3H8∶N2=1∶9 | 0.2 | 12 | 95 | [ |
| CoAl | 600 | C3H8∶N2=1∶9 | 0.2 | 47 | 95 | [ |
| Co@NC-ZIF | 600 | C3H8∶N2=1∶9 | 0.2 | 29 | 80 | [ |
| Co/SiO2 | 550 | C3H8∶N2=1∶3.2 | 0.15 | 25 | 95 | [ |
| CoO x @NC/S-1 | 520 | C3H8∶N2=5∶19 | 0.1 | 11 | 97 | [ |
| Co-S-1-Ar | 550 | C3H8∶H2∶Ar=1∶1:38 | 0.05 | 23 | 95 | [ |
| H-Co@S-1 | 600 | C3H8∶N2=1∶19 | 0.2 | 41.3 | 96.3 | [ |
| CoSiBeta | 600 | C3H8∶N2=1∶19 | 0.3 | 58.8 | 98.4 | [ |
| Co@S-1(EDA) | 600 | C3H8∶Ar=5∶16.5 | 0.32 | 30 | 92 | [ |
| Co-Zr/SiO2 | 550 | C3H8∶Ar=3∶97 | 0.5 | 8.7 | 96 | [ |
| 催化剂组成 | 反应温度/℃ | 原料组成(体积比) | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
|---|---|---|---|---|---|---|
| Co-mSiO2 | 600 | C3H8∶He=1∶9 | 0.5 | 36 | 94 | [ |
| Co SAs/SiO2 | 550 | C3H8∶N2=1∶3.2 | 0.15 | 25 | 95 | [ |
| Co-N-C/SiO2 | 600 | C3H8∶N2=1∶9 | 0.2 | 12 | 95 | [ |
| Co-Zr/SiO2 | 550 | C3H8∶Ar=3∶97 | 0.5 | 8.7 | 96 | [ |
| Co-Al2O3 | 590 | C3H8∶H2∶N2=1∶0.8∶3.2 | 0.15 | 21.1 | 97.1 | [ |
| Co/Al2O3-NS | 580 | C3H8∶N2=1∶19 | 0.2 | 35 | 93.5 | [ |
| Co/Al2O3-NR | 580 | C3H8∶N2=1∶19 | 0.2 | 40.2 | 97.5 | [ |
| Co/Al2O3-NP | 600 | C3H8∶He=1∶10 | 0.3 | 41 | 70 | [ |
| Co/Al2O3-NS | 600 | C3H8∶He=1∶10 | 0.3 | 31 | 81 | [ |
| Co/Al2O3-NF | 600 | C3H8∶He=1∶10 | 0.3 | 37 | 77 | [ |
| Co/S-1 | 550 | C3H8∶N2=20∶80 | 0.1 | 34.4 | 95.3 | [ |
| Co-acac@S-1 | 600 | C3H8∶N2=5∶95 | 0.3 | 47 | 94.7 | [ |
| Co-S-1 | 550 | C3H8∶H2∶Ar=1∶1∶38 | 0.1 | 19.9 | 99.3 | [ |
| CoO x @NC/S-1 | 520 | C3H8∶N2=5∶19 | 0.1 | 11 | 97 | [ |
| CoO x @MFI | 600 | C3H8∶N2=1∶9 | 0.2 | 59 | 93 | [ |
| Co@MFI-P50 | 600 | C3H8 | 0.1 | 41.8 | 93 | [ |
| Co@MFI-B130 | 600 | C3H8 | 0.1 | 14 | 90 | [ |
| Co@Si-BEA | 590 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 25 | 93 | [ |
| CoSiBeta | 600 | C3H8∶N2=5∶95 | 0.3 | 58.8 | 98.4 | [ |
| Co/NC | 550 | C3H8∶N2=4∶6 | 0.05 | 7.2 | 91.9 | [ |
| CoN@OCNT | 570 | C3H8∶He=2.4∶97.6 | 0.2 | 20 | 98 | [ |
| Co@NC-ZIF SA | 600 | C3H8∶N2=1∶9 | 0.2 | 29 | 80 | [ |
| 催化剂组成 | 反应温度/℃ | 原料组成(体积比) | 催化剂质量/g | 丙烷转化率/% | 丙烯选择性/% | 文献 |
|---|---|---|---|---|---|---|
| Co-mSiO2 | 600 | C3H8∶He=1∶9 | 0.5 | 36 | 94 | [ |
| Co SAs/SiO2 | 550 | C3H8∶N2=1∶3.2 | 0.15 | 25 | 95 | [ |
| Co-N-C/SiO2 | 600 | C3H8∶N2=1∶9 | 0.2 | 12 | 95 | [ |
| Co-Zr/SiO2 | 550 | C3H8∶Ar=3∶97 | 0.5 | 8.7 | 96 | [ |
| Co-Al2O3 | 590 | C3H8∶H2∶N2=1∶0.8∶3.2 | 0.15 | 21.1 | 97.1 | [ |
| Co/Al2O3-NS | 580 | C3H8∶N2=1∶19 | 0.2 | 35 | 93.5 | [ |
| Co/Al2O3-NR | 580 | C3H8∶N2=1∶19 | 0.2 | 40.2 | 97.5 | [ |
| Co/Al2O3-NP | 600 | C3H8∶He=1∶10 | 0.3 | 41 | 70 | [ |
| Co/Al2O3-NS | 600 | C3H8∶He=1∶10 | 0.3 | 31 | 81 | [ |
| Co/Al2O3-NF | 600 | C3H8∶He=1∶10 | 0.3 | 37 | 77 | [ |
| Co/S-1 | 550 | C3H8∶N2=20∶80 | 0.1 | 34.4 | 95.3 | [ |
| Co-acac@S-1 | 600 | C3H8∶N2=5∶95 | 0.3 | 47 | 94.7 | [ |
| Co-S-1 | 550 | C3H8∶H2∶Ar=1∶1∶38 | 0.1 | 19.9 | 99.3 | [ |
| CoO x @NC/S-1 | 520 | C3H8∶N2=5∶19 | 0.1 | 11 | 97 | [ |
| CoO x @MFI | 600 | C3H8∶N2=1∶9 | 0.2 | 59 | 93 | [ |
| Co@MFI-P50 | 600 | C3H8 | 0.1 | 41.8 | 93 | [ |
| Co@MFI-B130 | 600 | C3H8 | 0.1 | 14 | 90 | [ |
| Co@Si-BEA | 590 | C3H8∶H2∶N2=5∶4∶5 | 0.15 | 25 | 93 | [ |
| CoSiBeta | 600 | C3H8∶N2=5∶95 | 0.3 | 58.8 | 98.4 | [ |
| Co/NC | 550 | C3H8∶N2=4∶6 | 0.05 | 7.2 | 91.9 | [ |
| CoN@OCNT | 570 | C3H8∶He=2.4∶97.6 | 0.2 | 20 | 98 | [ |
| Co@NC-ZIF SA | 600 | C3H8∶N2=1∶9 | 0.2 | 29 | 80 | [ |
| [1] | CHERNYAK Sergei A, CORDA Massimo, DATH Jean-Pierre, et al. Light olefin synthesis from a diversity of renewable and fossil feedstocks: State-of the-art and outlook[J]. Chemical Society Reviews, 2022, 51(18): 7994-8044. |
| [2] | SONG Shaojia, SUN Yuanqing, YANG Kun, et al. Recent progress in metal-molecular sieve catalysts for propane dehydrogenation[J]. ACS Catalysis, 2023, 13(9): 6044-6067. |
| [3] | Özgül AGBABA, Ioan-Teodor TROTUŞ, SCHMIDT Wolfgang, et al. Light olefins from acetylene under pressurized conditions[J]. Industrial & Engineering Chemistry Research, 2023, 62(4): 1819-1825. |
| [4] | ZHANG Bofeng, SONG Mingxia, XU Mingrui, et al. Recent advances in metal-zeolite catalysts for direct propane dehydrogenation[J]. Energy & Fuels, 2023, 37(24): 19419-19432. |
| [5] | AL-ABSI Akram A, AITANI Abdullah M, AL-KHATTAF Sulaiman S. Thermal and catalytic cracking of whole crude oils at high severity[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104705. |
| [6] | YOSHIMURA Y, KIJIMA N, HAYAKAWA T, et al. Catalytic cracking of naphtha to light olefins[J]. Catalysis Surveys from Japan, 2001, 4(2): 157-167. |
| [7] | LONGSTAFF Daniel C. Development of a comprehensive naphtha catalytic cracking kinetic model[J]. Energy & Fuels, 2012, 26(2): 801-809. |
| [8] | WATANABE Ryo, HIRATA Nozomu, YODA Yuta, et al. Dehydrogenation of lower alkanes using H2S[J]. Journal of the Japan Petroleum Institute, 2022, 65(2): 50-57. |
| [9] | DAI Yihu, GAO Xing, WANG Qiaojuan, et al. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane[J]. Chemical Society Reviews, 2021, 50(9): 5590-5630. |
| [10] | WANG Chaojie, YANG Bing, GU Qingqing, et al. Near 100% ethene selectivity achieved by tailoring dual active sites to isolate dehydrogenation and oxidation[J]. Nature Communications, 2021, 12(1): 5447. |
| [11] | SHEE Debaprasad, SAYARI Abdelhamid. Light alkane dehydrogenation over mesoporous Cr2O3/Al2O3 catalysts[J]. Applied Catalysis A: General, 2010, 389(1/2): 155-164. |
| [12] | TAN Shuai, HU Bo, KIM Wun-Gwi, et al. Propane dehydrogenation over alumina-supported iron/phosphorus catalysts: Structural evolution of iron species leading to high activity and propylene selectivity[J]. ACS Catalysis, 2016, 6(9): 5673-5683. |
| [13] | SANTHOSH KUMAR M, CHEN De, HOLMEN Anders, et al. Dehydrogenation of propane over Pt-SBA-15 and Pt-Sn-SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior[J]. Catalysis Today, 2009, 142(1/2): 17-23. |
| [14] | SATTLER Jesper J H B, Javier RUIZ-MARTINEZ, Eduardo SANTILLAN-JIMENEZ, et al. Catalytic dehydrogenation of light alkanes on metals and metal oxides[J]. Chemical Reviews, 2014, 114(20): 10613-10653. |
| [15] | TAN Shuai, GIL Laura Briones, SUBRAMANIAN Nachal, et al. Catalytic propane dehydrogenation over In2O3-Ga2O3 mixed oxides[J]. Applied Catalysis A: General, 2015, 498: 167-175. |
| [16] | ROSENFELD Devon, DELLINGER Phil, CHEN Jiaxing, et al. Supported nickel catalysts for propane dehydrogenation[C]//Abstracts of Papers of the American Chemical Society: USA: American Chemical Society, 2015. |
| [17] | SERYKH Alexander I, AGAFONOV Yury A. On the nature of active sites in alumina-supported zinc propane dehydrogenation catalysts[J]. Molecular Catalysis, 2020, 493: 111055. |
| [18] | ZHANG Yaoyuan, ZHAO Yun, OTROSHCHENKO Tatiana, et al. The effect of phase composition and crystallite size on activity and selectivity of ZrO2 in non-oxidative propane dehydrogenation[J]. Journal of Catalysis, 2019, 371: 313-324. |
| [19] | PÉREZ-REINA F J, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A. Dehydrogenation of propane over chromia-pillared zirconium phosphate catalysts[J]. Langmuir, 1999, 15(24): 8421-8428. |
| [20] | WU Tengfang, LIU Gang, ZENG Liang, et al. Structure and catalytic consequence of Mg-modified VO x /Al2O3 catalysts for propane dehydrogenation[J]. AIChE Journal, 2017, 63(11): 4911-4919. |
| [21] | SHAO Chuntao, LANG Wanzhong, YAN Xi, et al. Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: Effects of support and loading amount[J]. RSC Advances, 2017, 7(8): 4710-4723. |
| [22] | ZHANG Yuchen, YU Yichen, DAI Yi, et al. Regulating the C—H bond activation pathway over ZrO2 via doping engineering for propane dehydrogenation[J]. ACS Catalysis, 2023, 13(10): 6893-6904. |
| [23] | Manuel ALCÁNTARA-RODRÍGUEZ, Enrique RODRÍGUEZ-CASTELLÓN, Antonio JIMÉNEZ-LÓPEZ. Propane dehydrogenation on mixed Ga/Cr oxide pillared zirconium phosphate materials[J]. Langmuir, 1999, 15(4): 1115-1120. |
| [24] | ZHANG Xuezheng, YUE Yinghong, GAO Zi. Chromium oxide supported on mesoporous SBA-15 as propane dehydrogenation and oxidative dehydrogenation catalysts[J]. Catalysis Letters, 2002, 83(1): 19-25. |
| [25] | FUJDALA Kyle L, Don TILLEY T. Thermolytic molecular precursor routes to Cr/Si/Al/O and Cr/Si/Zr/O catalysts for the oxidative dehydrogenation and dehydrogenation of propane[J]. Journal of Catalysis, 2003, 218(1): 123-134. |
| [26] | SAITO Masahiro, WATANABE Shinya, TAKAHARA Isao, et al. Dehydrogenation of propane over a silica-supported gallium oxide catalyst[J]. Catalysis Letters, 2003, 89(3): 213-217. |
| [27] | ZHENG Bo, HUA Weiming, YUE Yinghong, et al. Dehydrogenation of propane to propene over different polymorphs of gallium oxide[J]. Journal of Catalysis, 2005, 232(1): 143-151. |
| [28] | XU Bingjun, ZHENG Bo, HUA Weiming, et al. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts[J]. Journal of Catalysis, 2006, 239(2): 470-477. |
| [29] | CHEN Miao, XU Jie, SU Fangzheng, et al. Dehydrogenation of propane over spinel-type gallia-alumina solid solution catalysts[J]. Journal of Catalysis, 2008, 256(2): 293-300. |
| [30] | HE Yang, SONG Yuanjun, CULLEN David A, et al. Selective and stable non-noble-metal intermetallic compound catalyst for the direct dehydrogenation of propane to propylene[J]. Journal of the American Chemical Society, 2018, 140(43): 14010-14014. |
| [31] | SZETO Kai C, JONES Zachary R, MERLE Nicolas, et al. A strong support effect in selective propane dehydrogenation catalyzed by Ga(i-bu)3 grafted onto γ-alumina and silica[J]. ACS Catalysis, 2018, 8(8): 7566-7577. |
| [32] | TAN Shuai, KIM Seok-Jhin, MOORE Jason S, et al. Propane dehydrogenation over In2O3-Ga2O3-Al2O3 mixed oxides[J]. ChemCatChem, 2016, 8(1): 214-221. |
| [33] | GONG Ting, QIN Lijun, LU Jian, et al. ZnO modified ZSM-5 and Y zeolites fabricated by atomic layer deposition for propane conversion[J]. Physical Chemistry Chemical Physics, 2016, 18(1): 601-614. |
| [34] | LIU Gang, ZENG Liang, ZHAO Zhijian, et al. Platinum-modified ZnO/Al2O3 for propane dehydrogenation: Minimized platinum usage and improved catalytic stability[J]. ACS Catalysis, 2016, 6(4): 2158-2162. |
| [35] | Jeffrey CAMACHO-BUNQUIN, AICH Payoli, FERRANDON Magali, et al. Single-site zinc on silica catalysts for propylene hydrogenation and propane dehydrogenation: Synthesis and reactivity evaluation using an integrated atomic layer deposition-catalysis instrument[J]. Journal of Catalysis, 2017, 345: 170-182. |
| [36] | CHEN Chong, HU Zhongpan, REN Jintao, et al. ZnO nanoclusters supported on dealuminated zeolite β as a novel catalyst for direct dehydrogenation of propane to propylene[J]. ChemCatChem, 2019, 11(2): 868-877. |
| [37] | CHEN Chong, HU Zhongpan, REN Jintao, et al. ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene[J]. Molecular Catalysis, 2019, 476: 110508. |
| [38] | ZHANG Fan, MIAO Changxi, YUE Yinghong, et al. Dehydrogenation of propane to propylene in the presence of CO2 over steaming-treated HZSM-5 supported ZnO[J]. Chinese Journal of Chemistry, 2012, 30(4): 929-934. |
| [39] | SCHWEITZER Neil M, HU Bo, Ujjal DAS, et al. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst[J]. ACS Catalysis, 2014, 4(4): 1091-1098. |
| [40] | WATANABE Ryo, HIRATA Nozomu, MIURA Kazuya, et al. Formation of active species for propane dehydrogenation with hydrogen sulfide co-feeding over transition metal catalyst[J]. Applied Catalysis A: General, 2019, 587: 117238. |
| [41] | SUN Yanan, TAO Lei, YOU Tingzheng, et al. Effect of sulfation on the performance of Fe2O3/Al2O3 catalyst in catalytic dehydrogenation of propane to propylene[J]. Chemical Engineering Journal, 2014, 244: 145-151. |
| [42] | WU Guangjun, HAO Yao, ZHANG Nan, et al. Oxidative dehydrogenation of propane with nitrous oxide over Fe-O-Al species occluded in ZSM-5: Reaction and deactivation mechanisms[J]. Microporous and Mesoporous Materials, 2014, 198: 82-91. |
| [43] | SUN Yanan, GAO Yanan, WU Yimin, et al. Effect of sulfate addition on the performance of Co/Al2O3 catalysts in catalytic dehydrogenation of propane[J]. Catalysis Communications, 2015, 60: 42-45. |
| [44] | SUN Yanan, WU Yimin, SHAN Honghong, et al. Studies on the nature of active cobalt species for the production of methane and propylene in catalytic dehydrogenation of propane[J]. Catalysis Letters, 2015, 145(7): 1413-1419. |
| [45] | ESTES Deven P, SIDDIQI Georges, ALLOUCHE Florian, et al. C—H activation on co, O sites: Isolated surface sites versus molecular analogs[J]. Journal of the American Chemical Society, 2016, 138(45): 14987-14997. |
| [46] | DAI Yihu, GU Jingjing, TIAN Suyang, et al. γ-Al2O3 sheet-stabilized isolate Co2+ for catalytic propane dehydrogenation[J]. Journal of Catalysis, 2020, 381: 482-492. |
| [47] | HU Bo, KIM Wun-Gwi, SULMONETTI Taylor P, et al. A mesoporous cobalt aluminate spinel catalyst for nonoxidative propane dehydrogenation[J]. ChemCatChem, 2017, 9(17): 3330-3337. |
| [48] | LI Xiuyi, WANG Pengzhao, WANG Haoren, et al. Effects of the state of Co species in Co/Al2O3 catalysts on the catalytic performance of propane dehydrogenation[J]. Applied Surface Science, 2018, 441: 688-693. |
| [49] | ZHAO Yiqing, SOHN Hyuntae, HU Bo, et al. Zirconium modification promotes catalytic activity of a single-site cobalt heterogeneous catalyst for propane dehydrogenation[J]. ACS Omega, 2018, 3(9): 11117-11127. |
| [50] | LIU Gang, ZHAO Zhijian, WU Tengfang, et al. Nature of the active sites of VO x /Al2O3 catalysts for propane dehydrogenation[J]. ACS Catalysis, 2016, 6(8): 5207-5214. |
| [51] | GU Yu, LIU Haijun, YANG Miaomiao, et al. Highly stable phosphine modified VO x /Al2O3 catalyst in propane dehydrogenation[J]. Applied Catalysis B: Environmental, 2020, 274: 119089. |
| [52] | XIE Yufei, LUO Ran, SUN Guodong, et al. Facilitating the reduction of V—O bonds on VO x /ZrO2 catalysts for non-oxidative propane dehydrogenation[J]. Chemical Science, 2020, 11(15): 3845-3851. |
| [53] | SOKOLOV Sergey, BYCHKOV Victor Yu, STOYANOVA Mariana, et al. Effect of VO x species and support on coke formation and catalyst stability in nonoxidative propane dehydrogenation[J]. ChemCatChem, 2015, 7(11): 1691-1700. |
| [54] | HU Ping, CHEN Yan, YAN Xi, et al. Correlation of the vanadium precursor and structure performance of porous VO x -SiO2 solids for catalytic dehydrogenation of propane[J]. Industrial & Engineering Chemistry Research, 2019, 58(10): 4065-4073. |
| [55] | HU Ping, LANG Wanzhong, YAN Xi, et al. Influence of gelation and calcination temperature on the structure-performance of porous VO x -SiO2 solids in non-oxidative propane dehydrogenation[J]. Journal of Catalysis, 2018, 358: 108-117. |
| [56] | CHEN Chong, SUN Minglei, HU Zhongpan, et al. Nature of active phase of VO x catalysts supported on Si Beta for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2020, 41(2): 276-285. |
| [57] | LIU Qinglong, YANG Zhi, LUO Mingsheng, et al. Vanadium-containing dendritic mesoporous silica nanoparticles: Multifunctional catalysts for the oxidative and non-oxidative dehydrogenation of propane to propylene[J]. Microporous and Mesoporous Materials, 2019, 282: 133-145. |
| [58] | CHOI Seung-Won, KIM Wun-Gwi, Jung-Seob SO, et al. Propane dehydrogenation catalyzed by gallosilicate MFI zeolites with perturbed acidity[J]. Journal of Catalysis, 2017, 345: 113-123. |
| [59] | HAN Shanlei, ZHAO Dan, LUND Henrik, et al. TiO2-supported catalysts with ZnO and ZrO2 for non-oxidative dehydrogenation of propane: Mechanistic analysis and application potential[J]. Catalysis Science & Technology, 2020, 10(20): 7046-7055. |
| [60] | SUN Yanan, GAO Chuancheng, TAO Lei, et al. ZnNbO catalysts for propylene production via catalytic dehydrogenation of propane[J]. Catalysis Communications, 2014, 50: 73-77. |
| [61] | ZHAO Dan, LI Yuming, HAN Shanlei, et al. ZnO nanoparticles encapsulated in nitrogen-doped carbon material and silicalite-1 composites for efficient propane dehydrogenation[J]. iScience, 2019, 13: 269-276. |
| [62] | ALMUTAIRI Sami M T, MEZARI Brahim, MAGUSIN Pieter C M M, et al. Structure and reactivity of Zn-modified ZSM-5 zeolites: The importance of clustered cationic Zn complexes[J]. ACS Catalysis, 2012, 2(1): 71-83. |
| [63] | HAN Shanlei, ZHAO Dan, OTROSHCHENKO Tatiana, et al. Elucidating the nature of active sites and fundamentals for their creation in Zn-containing ZrO2-based catalysts for nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2020, 10(15): 8933-8949. |
| [64] | ALEKSANDROV Hristiyan A, VAYSSILOV Georgi N. Theoretical investigation of ethane dehydrogenation on cationic Zn species in ZSM-5 zeolites—The second Al center in vicinity of the cation is essential for the accomplishment of the complete catalytic cycle[J]. Catalysis Today, 2010, 152(1/2/3/4): 78-87. |
| [65] | ZHANG Yaoyuan, ZHAO Yun, OTROSHCHENKO Tatiana, et al. Control of coordinatively unsaturated Zr sites in ZrO2 for efficient C—H bond activation[J]. Nature Communications, 2018, 9(1): 3794. |
| [66] | GAO Xinqian, LU Wenduo, HU Shouzhao, et al. Rod-shaped porous alumina-supported Cr2O3 catalyst with low acidity for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2019, 40(2): 184-191. |
| [67] | HU Zhongpan, WANG Zheng, YUAN Zhongyong. Cr/Al2O3 catalysts with strong metal-support interactions for stable catalytic dehydrogenation of propane to propylene[J]. Molecular Catalysis, 2020, 493: 111052. |
| [68] | ZHANG Yaliu, YANG Shuang, LU Jichang, et al. Effect of a Ce promoter on nonoxidative dehydrogenation of propane over the commercial Cr/Al2O3 catalyst[J]. Industrial & Engineering Chemistry Research, 2019, 58(43): 19818-19824. |
| [69] | SHAO Huaiqi, WANG Xun, GU Xia, et al. Improved catalytic performance of CrO x catalysts supported on foamed Sn-modified alumina for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2021, 311: 110684. |
| [70] | HE Dedong, ZHANG Yaliu, YANG Shuang, et al. Investigation of the isolated Cr(Ⅵ) species in Cr/MCM-41 catalysts and its effect on catalytic activity for dehydrogenation of propane[J]. ChemCatChem, 2018, 10(23): 5434-5440. |
| [71] | WĘGRZYNIAK A, ROKICIŃSKA A, HĘDRZAK E, et al. High-performance Cr-Zr-O and Cr-Zr-K-O catalysts prepared by nanocasting for dehydrogenation of propane to propene[J]. Catalysis Science & Technology, 2017, 7(24): 6059-6068. |
| [72] | DEWANGAN Nikita, ASHOK Jangam, SETHIA Madhav, et al. Cobalt-based catalyst supported on different morphologies of alumina for non-oxidative propane dehydrogenation: Effect of metal support interaction and Lewis acidic sites[J]. ChemCatChem, 2019, 11(19): 4923-4934. |
| [73] | ZHANG Changwu, WEN Jing, WANG Lei, et al. Iron doping boosts the reactivity and stability of the γ-Al2O3 nanosheet supported cobalt catalyst for propane dehydrogenation[J]. New Journal of Chemistry, 2020, 44(18): 7450-7459. |
| [74] | DAI Yihu, WU Yue, DAI Hua, et al. Effect of coking and propylene adsorption on enhanced stability for Co2+-catalyzed propane dehydrogenation[J]. Journal of Catalysis, 2021, 395: 105-116. |
| [75] | CHEN Chong, ZHANG Shoumin, WANG Zheng, et al. Ultrasmall Co confined in the silanols of dealuminated Beta zeolite: A highly active and selective catalyst for direct dehydrogenation of propane to propylene[J]. Journal of Catalysis, 2020, 383: 77-87. |
| [76] | HU Bo, “BEAN” GETSOIAN Andrew, SCHWEITZER Neil M, et al. Selective propane dehydrogenation with single-site CoⅡ on SiO2 by a non-redox mechanism[J]. Journal of Catalysis, 2015, 322: 24-37. |
| [77] | SUN Yanan, WU Yimin, TAO Lei, et al. Effect of pre-reduction on the performance of Fe2O3/Al2O3 catalysts in dehydrogenation of propane[J]. Journal of Molecular Catalysis A: Chemical, 2015, 397: 120-126. |
| [78] | WANG Haoren, WANG Hui, LI Xiuyi, et al. Nature of active tin species and promoting effect of nickle in silica supported tin oxide for dehydrogenation of propane[J]. Applied Surface Science, 2017, 407: 456-462. |
| [79] | Lange N A. Lange’s handbook of chemistry[M]. 4th ed. New York: McGRAW-HILL Inc., 1941: 1324. |
| [80] | LI Chunyi, WANG Guowei. Gas-solid catalytic dehydrogenation of propane and butanes to olefins[J]. Scientia Sinica Chimica, 2018, 48(4): 342-361. |
| [81] | LI Chunyi, WANG Guowei. Dehydrogenation of light alkanes to mono-olefins[J]. Chemical Society Reviews, 2021, 50(7): 4359-4381. |
| [82] | XU Yuebing, HU Wenjin, LI Yufeng, et al. Manipulating the cobalt species states to break the conversion-selectivity trade-off relationship for stable ethane dehydrogenation over ligand-free-synthesized Co@MFI catalysts[J]. ACS Catalysis, 2023, 13(3): 1830-1847. |
| [83] | CAO Xinrui. Insight into mechanism and selectivity of propane dehydrogenation over the Pd-doped Cu(111) surface[J]. RSC Advances, 2016, 6(70): 65524-65532. |
| [84] | HU Zhongpan, QIN Gangqiang, HAN Jingfeng, et al. Atomic insight into the local structure and microenvironment of isolated Co-motifs in MFI zeolite frameworks for propane dehydrogenation[J]. Journal of the American Chemical Society, 2022, 144(27): 12127-12137. |
| [85] | XU Yuebing, YU Wenda, ZHANG Hao, et al. Suppressing C—C bond dissociation for efficient ethane dehydrogenation over the isolated Co(Ⅱ) sites in SAPO-34[J]. ACS Catalysis, 2021, 11(21): 13001-13019. |
| [86] | WU Xueqiu, SONG Shaojia, YANG Min, et al. The microenvironment change of isolated Co sites in silicalite-1 zeolite induced by balancing cations for boosting propane dehydrogenation[J]. Chemistry of Materials, 2023, 35(18): 7789-7799. |
| [87] | SONG Shaojia, LI Jun, WU Zhijie, et al. In situ encapsulated subnanometric CoO clusters within silicalite-1 zeolite for efficient propane dehydrogenation[J]. AIChE Journal, 2022, 68(2): e17451. |
| [88] | LI Yuming, ZHANG Qiyang, FU Shuting, et al. Active species and fundamentals of their creation in Co-containing catalysts for efficient propane dehydrogenation to propylene[J]. Chemical Engineering Journal, 2023, 460: 141778. |
| [89] | WATANABE Ryo, HIRATA Nozomu, FUKUHARA Choji. Active species of sulfated metal oxide catalyst for propane dehydrogenation[J]. Journal of the Japan Petroleum Institute, 2017, 60(5): 223-231. |
| [90] | ZHAO Zhiping, WANG Zhixia, TONG Yanbing, et al. Al2O3 nanorod with rich pentacoordinate Al3+ sites stabilizing Co2+ for propane dehydrogenation[J]. Catalysts, 2023, 13(5): 807. |
| [91] | WU Lizhi, REN Zhuangzhuang, HE Yongsheng, et al. Atomically dispersed Co2+ sites incorporated into a silicalite-1 zeolite framework as a high-performance and coking-resistant catalyst for propane nonoxidative dehydrogenation to propylene[J]. ACS Applied Materials & Interfaces, 2021, 13(41): 48934-48948. |
| [92] | LONG Jiangping, TIAN Suyang, WEI Sheng, et al. Direct dehydrogenation of propane over Co@silicalite-1 zeolite: Steaming-induced restructuring of Co2+ active sites[J]. Applied Surface Science, 2023, 614: 156238. |
| [93] | CHAI Yicong, CHEN Shunhua, CHEN Yang, et al. Dual-atom catalyst with N-colligated Zn1Co1 species as dominant active sites for propane dehydrogenation[J]. Journal of the American Chemical Society, 2024, 146(1): 263-273. |
| [94] | JEON Namgi, Jungmok OH, TAYAL Akhil, et al. Effects of heat-treatment atmosphere and temperature on cobalt species in Co/Al2O3 catalyst for propane dehydrogenation[J]. Journal of Catalysis, 2021, 404: 1007-1016. |
| [95] | CAO Tianlong, DAI Xueya, LI Fan, et al. Efficient non-precious metal catalyst for propane dehydrogenation: Atomically dispersed cobalt-nitrogen compounds on carbon nanotubes[J]. ChemCatChem, 2021, 13(13): 3067-3073. |
| [96] | WANG Qige, XU Wentao, MA Zhongchen, et al. Highly effective direct dehydrogenation of propane to propylene by microwave catalysis at low temperature over Co-Sn/NC microwave catalyst[J]. ChemCatChem, 2021, 13(3): 1009-1022. |
| [97] | LIU Junling, WANG Jingnan, ZHANG Yining, et al. Improved C—H activation in propane dehydrogenation using zeolite-stabilized Co—O moieties[J]. ACS Catalysis, 2023, 13(22): 14737-14745. |
| [98] | LI Yuming, LIU Ziye, ZHANG Qiyang, et al. Influence of carbonization temperature on cobalt-based nitrogen-doped carbon nanopolyhedra derived from ZIF-67 for nonoxidative propane dehydrogenation[J]. Petroleum Science, 2023, 20(1): 559-568. |
| [99] | BIAN Zhoufeng, DEWANGAN Nikita, WANG Zhigang, et al. Mesoporous-silica-stabilized cobalt(Ⅱ) oxide nanoclusters for propane dehydrogenation[J]. ACS Applied Nano Materials, 2021, 4(2): 1112-1125. |
| [100] | JEON Namgi, SEO Okkyun, Jungmok OH, et al. Non-oxidative propane dehydrogenation over alumina-supported Co-V oxide catalysts[J]. Applied Catalysis A: General, 2021, 614: 118036. |
| [101] | WU Yueqi, LONG Jiangping, WEI Sheng, et al. Non-oxidative propane dehydrogenation over Co/Ti-ZSM-5 catalysts: Ti species-tuned Co state and surface acidity[J]. Microporous and Mesoporous Materials, 2022, 341: 112115. |
| [102] | WEI Sheng, DAI Hua, LONG Jiangping, et al. Nonoxidative propane dehydrogenation by isolated Co2+ in BEA zeolite: Dealumination-determined key steps of propane C—H activation and propylene desorption[J]. Chemical Engineering Journal, 2023, 455: 140726. |
| [103] | GE Meng, CHEN Xingye, LI Yanyong, et al. Perovskite-derived cobalt-based catalyst for catalytic propane dehydrogenation[J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130(1): 241-256. |
| [104] | KUBOTA Shohei, SUMI Tomoka, KITAMURA Haruna, et al. Promoted propane dehydrogenation over Co confined within core-shell silicalite-1 zeolite crystals[J]. Catalysis Science & Technology, 2024, 14(5): 1201-1208. |
| [105] | CHERNOV Aleksey N, SOBOLEV Vladimir I, GERASIMOV Evgeny Yu, et al. Propane dehydrogenation on Co-N-C/SiO2 catalyst: The role of single-atom active sites[J]. Catalysts, 2022, 12(10): 1262. |
| [106] | CHERNOV Aleksey N, CHEREPANOVA Svetlana V, GERASIMOV Evgeny Yu, et al. Propane dehydrogenation over cobalt aluminates: Evaluation of potential catalytic active sites[J]. Catalysts, 2023, 13(11): 1419. |
| [107] | CHERNOV Aleksey N, SOBOLEV Vladimir I, KOLTUNOV Konstantin Yu. Propane dehydrogenation to propylene over Co@N-doped carbon: Structure-activity-selectivity relationships[J]. Catalysis Communications, 2022, 170: 106495. |
| [108] | WANG Wenyu, WU Yue, LIU Tianyang, et al. Single Co sites in ordered SiO2 channels for boosting nonoxidative propane dehydrogenation[J]. ACS Catalysis, 2022, 12(4): 2632-2638. |
| [109] | WANG Yansu, SUO Yujun, REN Jintao, et al. Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation[J]. Journal of Colloid and Interface Science, 2021, 594: 113-121. |
| [110] | REN Zhuangzhuang, HE Yongsheng, YANG Meng, et al. The investigation into the different Co species over Silicalite-1 via modulating heat-treatment atmosphere for propane dehydrogenation[J]. Molecular Catalysis, 2022, 530: 112580. |
| [111] | HAN Dingmei, LIU Meiyu, HUANG Chengming, et al. Uniformly stable hydroxylated cobalt(Ⅱ) silicate species embedded within silicalite-1 zeolite for boosting propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2023, 352: 112516. |
| [112] | DE Sudipta, Antonio AGUILAR-TAPIA, Samy OULD-CHIKH, et al. Pure silica-supported transition metal catalysts for the non-oxidative dehydrogenation of ethane: Confinement effects on the stability[J]. Journal of Materials Chemistry A, 2022, 10(17): 9445-9456. |
| [113] | WANG Y M, WU Z Y, WANG H J, et al. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: The influence of host-guest interactions[J]. Advanced Functional Materials, 2006, 16(18): 2374-2386. |
| [114] | LIU Tao, JU Xiaoqiu, HU Zhixin, et al. Cobalt oxide confined in mesoporous SiO2 as effective catalyst for CO oxidation[J]. Microporous and Mesoporous Materials, 2022, 333: 111733. |
| [115] | GUO Hongyao, HE Huan, MIAO Changxi, et al. CO2 assisted ethane dehydrogenation over Co-exchanged ZSM-5 and ZSM-11 zeolites: Effect of Al spatial distribution[J]. Applied Catalysis A: General, 2022, 635: 118569. |
| [116] | MA Rui, GAO Junxian, KOU Jiajing, et al. Insights into the nature of selective nickel sites on Ni/Al2O3 catalysts for propane dehydrogenation[J]. ACS Catalysis, 2022, 12(20): 12607-12616. |
| [117] | ITADANI Atsushi, SOGAWA Yusuke, Akira ODA, et al. Possibility of copper-ion-exchanged MFI-type zeolite as C—H bond activation material for propane and the driving force for activation[J]. The Journal of Physical Chemistry C, 2015, 119(37): 21483-21496. |
| [118] | GUO Hongyao, HE Huan, MIAO Changxi, et al. Ethane conversion in the presence of CO2 over Co-based ZSM-5 zeolite: Co species controlling the reaction pathway[J]. Molecular Catalysis, 2022, 519: 112155. |
| [119] | CREMERS Véronique, PUURUNEN Riikka L, DENDOOVEN Jolien. Conformality in atomic layer deposition: Current status overview of analysis and modelling[J]. Applied Physics Reviews, 2019, 6(2): 021302. |
| [120] | HUANG Renjing, CHENG Yuan, JI Yichen, et al. Atomic layer deposition for preparing isolated Co sites on SiO2 for ethane dehydrogenation catalysis[J]. Nanomaterials, 2020, 10(2): 244. |
| [121] | YU Kewei, SRINIVAS Sanjana, WANG Cong, et al. High-temperature pretreatment effect on Co/SiO2 active sites and ethane dehydrogenation[J]. ACS Catalysis, 2022, 12(19): 11749-11760. |
| [122] | GAO Yating, PENG Lilin, LONG Jiangping, et al. Hydrogen pre-reduction determined Co-silica interaction and performance of cobalt catalysts for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2021, 323: 111187. |
| [123] | WANG Guowei, JIANG Yixue, ZHANG Shan, et al. Insight into the active Co phase of Co/Al2O3 catalyst for ethane dehydrogenation[J]. Catalysis Letters, 2022, 152(10): 2971-2979. |
| [124] | KOIRALA Rajesh, SAFONOVA Olga V, PRATSINIS Sotiris E, et al. Effect of cobalt loading on structure and catalytic behavior of CoO x /SiO2 in CO2-assisted dehydrogenation of ethane[J]. Applied Catalysis A: General, 2018, 552: 77-85. |
| [125] | Ujjal DAS, ZHANG Guanghui, HU Bo, et al. Effect of siloxane ring strain and cation charge density on the formation of coordinately unsaturated metal sites on silica: Insights from density functional theory (DFT) studies[J]. ACS Catalysis, 2015, 5(12): 7177-7185. |
| [126] | MACNAUGHTAN Marisa L, Han Sen SOO, FREI Heinz. Binuclear ZrOCo metal-to-metal charge-transfer unit in mesoporous silica for light-driven CO2 reduction to CO and formate[J]. The Journal of Physical Chemistry C, 2014, 118(15): 7874-7885. |
| [127] | MUHLENKAMP Jessica A, LIBRETTO Nicole J, MILLER Jeffrey T, et al. Ethane dehydrogenation performance and high temperature stability of silica supported cobalt phosphide nanoparticles[J]. Catalysis Science & Technology, 2022, 12(3): 976-985. |
| [128] | Xintong LYU, YANG Min, SONG Shaojia, et al. Boosting propane dehydrogenation by the regioselective distribution of subnanometric CoO clusters in MFI zeolite nanosheets[J]. ACS Applied Materials & Interfaces, 2023, 15(11): 14250-14260. |
| [129] | YAO Lu, ZHU Jianqiang, PENG Xiaoxi, et al. Comparative study on the promotion effect of Mn and Zr on the stability of Ni/SiO2 catalyst for CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7268-7279. |
| [130] | GAO X Y, ASHOK J, WIDJAJA S, et al. Ni/SiO2 catalyst prepared via Ni-aliphatic amine complexation for dry reforming of methane: Effect of carbon chain number and amine concentration[J]. Applied Catalysis A: General, 2015, 503: 34-42. |
| [131] | CHERIFI O, BETTAHAR M M, AUROUX A. Microcalorimetric study of the acidity and basicity of NiSiO2 catalysts modified by metallic additives Fe, Co, Zr and Ce[J]. Thermochimica Acta, 1997, 306(1/2): 131-134. |
| [132] | ZHU Jianqiang, PENG Xiaoxi, YAO Lu, et al. The promoting effect of La, Mg, Co and Zn on the activity and stability of Ni/SiO2 catalyst for CO2 reforming of methane[J]. International Journal of Hydrogen Energy, 2011, 36(12): 7094-7104. |
| [133] | CHEN Ming, LIU Huan, WANG Ying, et al. Cobalt catalyzed ethane dehydrogenation to ethylene with CO2: Relationships between cobalt species and reaction pathways[J]. Journal of Colloid and Interface Science, 2024, 660: 124-135. |
| [134] | BRIK Younes, KACIMI Mohamed, François BOZON-VERDURAZ, et al. Characterization and comparison of the activity of boron-modified Co/TiO2 catalysts in butan-2-ol conversion and oxidative dehydrogenation of ethane[J]. Journal of Catalysis, 2002, 211(2): 470-481. |
| [135] | WANG Pengzhao, XU Zhikang, WANG Tinghai, et al. Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation[J]. Catalysis Science & Technology, 2020, 10(11): 3537-3541. |
| [136] | XIE Zean, LI Zhi, TANG Peng, et al. The effect of oxygen vacancies on the coordinatively unsaturated Al-O acid-base pairs for propane dehydrogenation[J]. Journal of Catalysis, 2021, 397: 172-182. |
| [137] | PARMENTIER Julien, Mireille RICHARD-PLOUET, VILMINOT Serge. Influence of the sol-gel synthesis on the formation of spinel MgAl2O4 [J]. Materials Research Bulletin, 1998, 33(11): 1717-1724. |
| [138] | ZHANG Xin. Hydrothermal synthesis and catalytic performance of high-surface-area mesoporous nanocrystallite MgAl2O4 as catalyst support[J]. Materials Chemistry and Physics, 2009, 116(2/3): 415-420. |
| [139] | MOLINER Manuel, Cristina MARTÍNEZ, CORMA Avelino. Multipore zeolites: Synthesis and catalytic applications[J]. Angewandte Chemie International Edition, 2015, 54(12): 3560-3579. |
| [140] | RHODES Christopher J. Properties and applications of zeolites[J]. Science Progress, 2010, 93(Pt 3): 223-284. |
| [141] | Pedro CASTRO-FERNÁNDEZ, MANCE Deni, LIU Chong, et al. Propane dehydrogenation on Ga2O3-based catalysts: Contrasting performance with coordination environment and acidity of surface sites[J]. ACS Catalysis, 2021, 11(2): 907-924. |
| [142] | ESTES Deven P. Mechanistic investigations of C—H activations on silica-supported Co(Ⅱ) sites in catalytic propane dehydrogenation[J]. Chimia, 2017, 71(4): 177-180. |
| [143] | CHAI Yuchao, DAI Weili, WU Guangjun, et al. Confinement in a zeolite and zeolite catalysis[J]. Accounts of Chemical Research, 2021, 54(13): 2894-2904. |
| [144] | MEIER W M, OLSON D H, BAERLOCHER C h. Atlas of zeolite structure types[M]. 4th ed. Boston: Elsevier, 1996:1-229. |
| [145] | 徐如人, 庞文琴, 于吉红, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004. |
| XU Ruren. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004. | |
| [146] | HU Wenjin, XU Yuebing, XIN Jian, et al. Stable co-production of olefins and aromatics from ethane over Co2+-exchanged HZSM-5 zeolite[J]. Catalysis Science & Technology, 2022, 12(11): 3716-3726. |
| [147] | SU Ji, XIONG Guang, ZHOU Juncheng, et al. Amorphous Ti species in titanium silicalite-1: Structural features, chemical properties, and inactivation with sulfosalt[J]. Journal of Catalysis, 2012, 288: 1-7. |
| [148] | SADEK Renata, Karolina CHALUPKA-SPIEWAK, KRAFFT Jean-Marc, et al. The synthesis of different series of cobalt BEA zeolite catalysts by post-synthesis methods and their characterization[J]. Catalysts, 2022, 12(12): 1644. |
| [149] | DZWIGAJ Stanislaw, REJA Diane, Saremblé KONÉ-GUIRA, et al. Cobalt on dealuminated-Siβ as a catalyst for the oxidative dehydrogenation of propane[J]. Applied Catalysis A: General, 2023, 657: 119119. |
| [150] | HE Huan, MIAO Changxi, GUO Hongyao, et al. Ethane dehydrogenation over Co-based MOR zeolites[J]. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(4): 2045-2058. |
| [151] | VEERAKUMAR Pitchaimani, THANASEKARAN Pounraj, SUBBURAJ Thiruvengadam, et al. A metal-free carbon-based catalyst: An overview and directions for future research[J]. Journal of Carbon Research, 2018, 4(4): 54. |
| [152] | TANG Minghui, DENG Jiang, LI Mingming, et al. 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for toluene and quinoline hydrogenation[J]. Green Chemistry, 2016, 18(22): 6082-6090. |
| [153] | RANGRAZ Yalda, HERAVI Majid M, ELHAMPOUR Ali. Recent advances on heteroatom-doped porous carbon/metal materials: Fascinating heterogeneous catalysts for organic transformations[J]. Chemical Record, 2021, 21(8): 1985-2073. |
| [154] | Enrique GARCÍA-BORDEJÉ, PEREIRA Manuel Fernando R, Magnus RÖNNING, et al. Novel carbon materials modified with heteroatoms as metal-free catalyst and metal catalyst support[M]//Catalysis. Cambridge: Royal Society of Chemistry, 2014: 72-108. |
| [155] | XIE Jiahan, KAMMERT James D, KAYLOR Nicholas, et al. Atomically dispersed Co and Cu on N-doped carbon for reactions involving C—H activation[J]. ACS Catalysis, 2018, 8(5): 3875-3884. |
| [156] | CHEN Peirong, CHEW Ly May, XIA Wei. The influence of the residual growth catalyst in functionalized carbon nanotubes on supported Pt nanoparticles applied in selective olefin hydrogenation[J]. Journal of Catalysis, 2013, 307: 84-93. |
| [157] | CASTILLEJOS Eva, CHICO Rubén, BACSA Revathi, et al. Selective deposition of gold nanoparticles on or inside carbon nanotubes and their catalytic activity for preferential oxidation of CO[J]. European Journal of Inorganic Chemistry, 2010, 2010(32): 5096-5102. |
| [158] | HAUSER Andreas W, GOMES Joseph, BAJDICH Michal, et al. Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes[J]. Physical Chemistry Chemical Physics, 2013, 15(47): 20727-20734. |
| [159] | FRANCESCHINI Gustavo DO N, Patricia CONCEPCIÓN, SCHWAAB Marcio, et al. Spectroscopic insights into the role of CO2 on the nature of Cr species in a CrO x /Al2O3 catalysts during ethane dehydrogenation with CO2 [J]. Applied Catalysis A: General, 2023, 661: 119260. |
| [160] | SAERENS Stephanie, SABBE Maarten K, GALVITA Vladimir V, et al. The positive role of hydrogen on the dehydrogenation of propane on Pt(111)[J]. ACS Catalysis, 2017, 7(11): 7495-7508. |
| [161] | YAO Yongbin, WANG Jingnan, LIU Qiang, et al. Improving the selectivity and stability of supported cobalt catalysts via static Bi-doping and dynamic trace CO2 Co-feeding during propane dehydrogenation[J]. Angewandte Chemie International Edition, 2024: e202415295. |
| [162] | FURTADO E A, MILAS I, MILAM DE ALBUQUERQUE LINS J O, et al. The dehydrogenation reaction of light alkanes catalyzed by zeolites[J]. Physica Status Solidi (a), 2001, 187(1): 275-288. |
| [1] | JIANG Chunxi, LIN Dingbiao, BIAN Yao, ZHOU Wei, LU Haifeng, GUO Xiaolei, LIU Haifeng. Characteristics of rice husk as entrained-flow bed gasification feedstock and their impact on the process [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4937-4944. |
| [2] | XU Cong, FENG Yingjie, LIU Dongbing, XIE Zaiku. Review of zeolite confined Pt-based catalysts for propane dehydrogenation [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4954-4967. |
| [3] | CHEN Zizhao, HE Fangshu, HU Qiang, YANG Yang, CHEN Hanping, YANG Haiping. Research progress on anti-carbon deposition Ni-based catalysts for dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4968-4978. |
| [4] | WANG Zhen, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Development of Ni/Al2O3-based catalysts for the dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4979-4998. |
| [5] | ZHANG Haipeng, QIN Shanshan, WANG Yuxuan, YU Haibiao. Preparation of 3.0F-Ag x Co catalysts for N2O decomposition [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4999-5005. |
| [6] | LI Zhifu, YANG Xiaodong, WANG Baocai, HU Changliu, PEI Jikai, YAN Longfang, WU Ruifang, ZHANG Changsheng, WANG Yongzhao. Synthesis and properties of high temperature retarder HJ-1 [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5092-5100. |
| [7] | SUN Mengyuan, LU Shijian, LIU Ling, XUE Yanyang, ZHANG Yunrong, DONG Qi, KANG Guojun. Research progress of MOF and their derivatives in carbon capture [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5339-5350. |
| [8] | WANG Wenjun, LIU Ruixin, WANG Jun, ZHANG Qinglei, HOU Li’an. Research progress of visible light degradation of indoor VOCs by titanium dioxide materials [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5351-5362. |
| [9] | ZENG Jin, GAO Yan, WANG Zhaopeng, XIE Yuyun, LIU Jun, LIANG Qi, WANG Chunying. Degradation mechanism of 2,4-dichlorophenoxyacetic acid by NaYF4:Yb,Tm composite TiO2/Bi2WO6 photocatalyst and evaluation of products toxicity [J]. Chemical Industry and Engineering Progress, 2025, 44(9): 5416-5431. |
| [10] | LI Zeng, ZHAO Yunpeng, LI Yuhui, LIU Nan, ZHU Chunmeng, SHI Xiaogang, GAO Jinsen, LAN Xingying. Abnormal diagnosis of catalyst loss for FCC disengager based on CFD simulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4430-4442. |
| [11] | ZHAO Yongming, BU Yifeng, WANG Tao, DU Bing, MEN Zhuowu. Integrated optimization of catalyst dynamic replacement and steady-state Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4536-4544. |
| [12] | ZHANG Wei, LIANG Yaocheng, WU Qiao, FU Yehao, YIN Yanshan, CHENG Shan, RUAN Min, LIU Tao, ZHOU Zhaoyi, ZHANG Kaikai, LI Dancong. Metal ion modified Cu-SSZ-13 catalyst for NH3-selective catalytic reduction of NO x [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3879-3891. |
| [13] | WANG Hui, LIU Jiaxu. Research progress on the synthesis of SSZ-39 zeolite and NH3-SCR application [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3892-3906. |
| [14] | LU Peng, ZHANG Di, LIU Yaoyao, YU Wanjin, LIU Wucan, ZHANG Jianjun. Research progress of catalysts for gas-phase dehydrofluorination to synthesize C2 hydrofluoroolefins [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3907-3916. |
| [15] | GAO Jiaojiao, YAN Shiyu, YANG Taishun, XIE Shangzhi, YANG Yanjuan, XU Jing. Effect of alumina support crystal structure of Ru-based catalysts on polyethylene hydrogenolysis performance [J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3917-3927. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |