1 |
李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329.
|
|
LI X Y, BAI T J, WENG X, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J].Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329.
|
2 |
TAKEI K, HONDA W, HARADA S, et al. Toward flexible and wearable human-interactive health-monitoring devices[J]. Advanced Healthcare Materials, 2015, 4(4): 487-500.
|
3 |
WANG X F, LU X H, LIU B, et al. Flexible energy-storage devices: design consideration and recent progress[J]. Advanced Materials, 2014, 26(28): 4763-4782.
|
4 |
CHEN R Y, REN S H, KNAPP M, et al. Disordered lithium-rich oxyfluoride as a stable host for enhanced Li+ intercalation storage[J]. Advanced Energy Materials, 2015, 5(9): 1401814.
|
5 |
KIM S Y, JEONG H M, KWON J H, et al. Nickel oxide encapsulated nitrogen-rich carbon hollow spheres with multiporosity for high-performance pseudocapacitors having extremely robust cycle life[J]. Energy & Environmental Science, 2015, 8(1): 188-194.
|
6 |
YAN J, FAN Z J, SUN W, et al. Advanced asymmetric supercapacitors based on Ni(OH)2 graphene and porous graphene electrodes with high energy density[J]. Advanced Functional Materials, 2012, 22(12): 2632-2641.
|
7 |
CHENG H H, DONG Z L, HU C G, et al. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5(8): 3428-3434.
|
8 |
GUO K, MA Y, LI H Q, et al. Flexible wire-shaped supercapacitors in parallel double helix configuration with stable electrochemical properties under static/dynamic bending[J]. Small, 2016, 12(8): 1024-1033.
|
9 |
HAN B, HUANG Y L, LI R P, et al. Bio-inspired networks for optoelectronic applications[J]. Nature Communications, 2014, 5(1): 5674.
|
10 |
CHEN S Q, SHI B B, HE W D, et al. Quasifractal networks as current collectors for transparent flexible supercapacitors[J]. Advanced Functional Materials, 2019, 29(48): 1906618.
|
11 |
ALKORDI M H, LIU Y L, LARSEN R W, et al. Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts[J]. Journal of the American Chemical Society, 2008, 130(38): 12639-12641.
|
12 |
GUO Y X, FENG X, HAN T, et al. Tuning the luminescence of metal-organic frameworks for detection of energetic heterocyclic compounds[J]. Journal of the American Chemical Society, 2014, 136(44): 15485-15488.
|
13 |
KUNDU T, MITRA S, PATRA P, et al. Mechanical downsizing of a gadolinium(Ⅲ)-based metal-organic framework for anticancer drug delivery[J]. Chemistry: A European Journal, 2014, 20(33): 10514-10518.
|
14 |
CHEN X F, DING N, ZANG H, et al. Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples[J]. Journal of Chromatography A, 2013, 1304: 241-245.
|
15 |
GAO Y L, WU J X, ZHANG W, et al. The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors[J]. Materials Letters, 2014, 128: 208-211.
|
16 |
KAUR R, PAUL A K, DEEP A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene[J]. Forensic Science International, 2014, 242: 88-93.
|
17 |
LEE D Y, SHINDE D V, KIM E K, et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous and Mesoporous Materials, 2013, 171: 53-57.
|
18 |
WANG L J, DENG H X, FURUKAWA H, et al. Synthesis and characterization of metal-organic framework-74 containing 2, 4, 6, 8, and 10 different metals[J]. Inorganic Chemistry, 2014, 53(12): 5881-5883.
|
19 |
THI T V, RAI A K, GIM J, et al. High performance of Co-doped NiO nanoparticle anode material for rechargeable lithium ion batteries[J]. Journal of Power Sources, 2015, 292: 23-30.
|
20 |
MAI Y J, TU J P, XIA X H, et al. Co-doped NiO nanoflake arrays toward superior anode materials for lithium ion batteries[J]. Journal of Power Sources, 2011, 196(15): 6388-6393.
|
21 |
ZHANG J H, CAI G F, ZHOU D, et al. Co-doped NiO nanoflake array films with enhanced electrochromic properties[J]. Journal of Materials Chemistry C, 2014, 2(34): 7013-7021.
|
22 |
JIAO Y, PEI J, CHEN D H, et al. Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(3): 1094-1102.
|
23 |
HU G X, TANG C H, LI C X, et al. The sol-gel-derived nickel-cobalt oxides with high supercapacitor performances[J]. Journal of the Electrochemical Society, 2011, 158(6): A695.
|
24 |
WANG C H, ZHANG X, ZHANG D C, et al. Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability[J]. Electrochimica Acta, 2012, 63: 220-227.
|
25 |
WEI T Y, CHEN C H, CHIEN H C, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Advanced Materials, 2010, 22(3): 347-351.
|
26 |
YUAN C Z, LI J Y, HOU L R, et al. Facile template-free synthesis of ultralayered mesoporous nickel cobaltite nanowires towards high-performance electrochemical capacitors[J]. Journal of Materials Chemistry, 2012, 22(31): 16084-16090.
|
27 |
YOUNG C, SALUNKHE R R, ALSHEHRI S M, et al. High energy density supercapacitors composed of nickel cobalt oxide nanosheets on nanoporous carbon nanoarchitectures[J]. Journal of Materials Chemistry A, 2017, 5(23): 11834-11839.
|
28 |
CHEN S R, XUE M, LI Y Q, et al. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(40): 20145-20152.
|
29 |
QU C, ZHAO B T, JIAO Y, et al. Functionalized bimetallic hydroxides derived from metal-organic frameworks for high-performance hybrid supercapacitor with exceptional cycling stability[J]. ACS Energy Letters, 2017, 2(6): 1263-1269.
|
30 |
YOUNG C, KIM J, KANETI Y V, et al. One-step synthetic strategy of hybrid materials from bimetallic metal-organic frameworks for supercapacitor applications[J]. ACS Applied Energy Materials, 2018, 1(5): 2007-2015.
|
31 |
LEE J W, AHN T, SOUNDARARAJAN D, et al. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior[J]. Chemical Communications, 2011, 47(22): 6305-6307.
|
32 |
LIANG J B, MA R Z, IYI N, et al. Topochemical synthesis, anion exchange, and exfoliation of Co-Ni layered double hydroxides: a route to positively charged Co-Ni hydroxide nanosheets with tunable composition[J]. Chemistry of Materials, 2010, 22(2): 371-378.
|
33 |
YANG J, YU C, FAN X M, et al. Electroactive edge site-enriched nickel-cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors[J]. Energy & Environmental Science, 2016, 9(4): 1299-1307.
|
34 |
XIA H C, ZHANG J N, YANG Z, et al. 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances[J]. Nano-Micro Letters, 2017, 9(4): 1-11.
|
35 |
YE C J, QIN Q Q, LIU J Q, et al. Coordination derived stable Ni-Co MOFs for foldable all-solid-state supercapacitors with high specific energy[J]. Journal of Materials Chemistry A, 2019, 7(9): 4998-5008.
|
36 |
付韫珒, 熊传溪. 双金属MOF基复合结构材料及其超级电容器性能[J]. 储能科学与技术, 2018, 7(3): 495-501.
|
|
FU Y J, XIONG C X. Double metal MOF-based composite structure and performance as supercapacitor electrode[J]. Energy Storage Science and Technology, 2018, 7(3): 495-501.
|
37 |
ZHANG D J, SHI H Z, ZHANG R C, et al. Quick synthesis of zeolitic imidazolate framework microflowers with enhanced supercapacitor and electrocatalytic performances[J]. RSC Advances, 2015, 5(72): 58772-58776.
|