1 |
XIA Tianlai, WANG Yingqian, Chengkang MAI, et al. Facile in situ growth of ZnO nanosheets standing on Ni foam as binder-free anodes for lithium ion batteries[J]. RSC Advances, 2019, 9(34): 19253-19260.
|
2 |
王天星, 王贺权. 介孔纳米片构筑具有微纳分级结构的ZnCo2O4微米花及制备高比能锂离子电池[J]. 化工进展, 2018, 37(6): 2032-2038.
|
|
WANG Tianxing, WANG Hequan. Synthesis of hierarchical ZnCo2O4 miroflowers assembled by mesoporous nanosheets and their applications in high specific energy lithium ion battery[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2032-2038.
|
3 |
WANG Jun, WANG Jiazhao, SUN Ziqi, et al. A germanium/single-walled carbon nanotube composite paper as a free-standing anode for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(13): 4613-4618.
|
4 |
LI Weihan, YANG Zhenzhong, CHENG Jianxiu, et al. Germanium nanoparticles encapsulated in flexible carbon nanofibers as self-supported electrodes for high performance lithium-ion batteries[J]. Nanoscale, 2014, 6(9): 4532-4537.
|
5 |
郭丝霖, 康帅, 陆文强. 一步法制备锗/MXene复合材料及其作为锂离子电池负极的研究[J]. 无机材料学报, 2020, 35(1): 105-111.
|
|
GUO Silin, KANG Shuai, LU Wenqiang. Ge nanoparticles in MXene sheets: one-step synthesis and highly improved electrochemical property in lithium-ion batteries[J]. Journal of Inorganic Materials, 2020, 35(1): 105-111.
|
6 |
CHEN Yifan, LIN Yangfan, DU Ning, et al. Synthesis of Zn2GeO4@C core-shell nanorods as high-reversible anode materials for lithium-ion batteries[J]. Energy Technology, 2017, 5(9): 1656-1662.
|
7 |
DING Caihua, ZHAO Yongjie, YAN Dong, et al. Construction of Zn2GeO4/graphene nanostructures with dually-protected functional nanoframes for enhanced lithium-storage performances[J]. Electrochimica Acta, 2017, 251: 129-136.
|
8 |
WANG Rui, WU Songping, Yichao LYU, et al. Partially crystalline Zn2GeO4 nanorod/graphene composites as anode materials for high performance lithium ion batteries[J]. Langmuir, 2014, 30(27): 8215-8220.
|
9 |
ZOU Feng, HU Xianluo, Long QIE, et al. Facile synthesis of sandwiched Zn2GeO4-graphene oxide nanocomposite as a stable and high-capacity anode for lithium-ion batteries[J]. Nanoscale, 2014, 6(2): 924-930.
|
10 |
HAN Jinzhi, QIN Jian, GUO Lichao, et al. Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries[J]. Applied Surface Science, 2018, 427: 670-679.
|
11 |
JIN Shuaixing, WANG Chengxin. Synthesis and first investigation of excellent lithium storage performances of Fe2GeO4/reduced graphene oxide nanocomposite[J]. Nano Energy, 2014, 7: 63-71.
|
12 |
LIU Xusong, MA Xiaoxuan, WANG Jing, et al. The binder-free Ca2Ge7O16 nanosheet/carbon nanotube composite as a high-capacity anode for Li-ion batteries with long cycling life[J]. RSC Advances, 2016, 6(108): 107040-107048.
|
13 |
LIU Xusong, WANG Jing, LIU Xiaoxu, et al. Free-standing Ca2Ge7O16 nanorod arrays anode with long-term stability and superior rate capability in lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2016, 783: 15-21.
|
14 |
GE Rongyun, WU Songping, DU Yao, et al. Enhanced Li-storage performances of dually-protected CoGeO3 nanocomposites as anode materials for lithium ion batteries[J]. Carbon, 2016, 107: 352-360.
|
15 |
WANG Jun, FENG Chuanqi, SUN Ziqi, et al. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries[J]. Scientific Reports, 2014, 4: 7030.
|
16 |
FENG Jinkui, LAI Man On, LU Li. Lithium storage capability of CuGeO3 nanorods[J]. Materials Research Bulletin, 2012, 47(7): 1693-1696.
|
17 |
MENG Wenjie, ZHAO Min, YANG Huixian, et al. Synthesis of CuGeO3/reduced graphene oxide nanocomposite by hydrothermal reduction for high performance Li-ion battery anodes[J]. Ceramics International, 2020, 47(7):9249-9255.
|
18 |
LI Zhi, XU Zhanwei, TAN Xuehai, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science, 2013, 6(3): 871-878.
|
19 |
KIM C H, JUNG Y S, LEE K T, et al. The role of in situ generated nano-sized metal particles on the coulombic efficiency of MGeO3 (M = Cu, Fe, and Co) electrodes[J]. Electrochimica Acta, 2009, 54 (18): 4371-4377.
|
20 |
REN Jianguo, WU Qihui, TANG Hao, et al. Germanium-graphene composite anode for high-energy lithium batteries with long cycle life[J]. Journal of Materials Chemistry, 2013, 1(5): 1821-1826.
|
21 |
裴立宅, 杨永, 杨连金, 等. 一维锗酸盐纳米材料的合成及应用[J]. 材料工程, 2014, 1: 90-96.
|
|
PEI Lizhai, YANG Yong, YANG Lianjin, et al. Synthesis and application of one-dimensional germanate nanomaterial[J]. Journal of Material Engineering, 2014, 1: 90-96.
|
22 |
YI Zheng, HAN Qigang, CHENG Yong, et al. A novel strategy to prepare Sb thin film sandwiched between the reduced graphene oxide and Ni foam as binder-free anode material for lithium-ion batteries[J]. Electrochimica Acta, 2016, 190: 804-810.
|
23 |
WANG Xu, ZHANG Peng, WANG Tong, et al. Facile synthesis of mesoporous NiCo2O4 nanoneedle arrays on three dimensional graphene thin film grown on Ni foam for a high-performance binder-free lithium-ion battery anode[J]. Journal of Electroanalytical Chemistry, 2018, 823: 545-552.
|
24 |
赵豆豆, 汝强, 郭凌云, 等. 泡沫镍上生长纳米片ZnCo2O4负极材料[J]. 电池, 2016, 46(2): 61-64.
|
|
ZHAO Doudou, RU Qiang, GUO Lingyun, et al. ZnCo2O4 nanoflake arrays grown on Ni foam as anode material[J]. Battery Bimonthly, 2016, 46(2): 61-64.
|
25 |
祁琰媛, 郑申波, 杨雪, 等. 泡沫镍负载Ag/MoO2直接电极的制备及其电化学性能[J]. 人工晶体学报, 2017, 46(10): 1923-1929.
|
|
QI Yanyuan, ZHENG Shenbo, YANG Xue, et al. Synthesis and electrochemical properties of Ag/MoO2 anchored on Ni foam as binder-free anode for lithium ion batteries[J]. Journal of Synthetic Crystals, 2017, 46(10): 1923-1929.
|
26 |
CHEN Huixin, ZHANG Qiaobao, WANG Jiexi, et al. Mesoporous ZnCo2O4 microspheres composed of ultrathin nanosheets cross-linked with metallic NiSix nanowires on Ni foam as anodes for lithium ion batteries[J]. Nano Energy, 2014, 10: 245-258.
|
27 |
LI Qun, MIAO Xianguang, WANG Chengxiang, et al. Three-dimensional Mn-doped Zn2GeO4 nanosheet array hierarchical nanostructures anchored on porous Ni foam as binder-free and carbon-free lithium-ion battery anodes with enhanced electrochemical performance[J]. Journal of Materials Chemistry A, 2015, 3(42): 21328-21336.
|
28 |
WANG Fangfang, XING Yan, SU Zhongmin, et al. Single-crystalline CuGeO3 nanorods: synthesis, characterization and properties[J]. Materials Research Bulletin, 2013, 48(7):2654-2660.
|
29 |
WU Songping, WANG Rui, WANG Zhuolin, et al. CuGeO3 nanowires covered with graphene as anode materials of lithium ion batteries with enhanced reversible capacity and cyclic performance[J]. Nanoscale, 2014, 6(14): 8350-8358.
|
30 |
FENG Jinkui, WANG Chunsheng, QIAN Yitai. In situ synthesis of cadmium germanates (Cd2Ge2O6)/reduced graphene oxide nanocomposites as novel high capacity anode materials for advanced lithium-ion batteries[J]. Materials Letters, 2014, 122: 327-330.
|