1 |
毛宗强. 燃料电池[M]. 北京: 化学工业出版社, 2005: 21-29.
|
|
MAO Zongqiang. Fuel cell[M]. Beijing: Chemical Industry Press, 2005: 21-29.
|
2 |
YE L, GAO Y, ZHU S, et al. A Pt content and pore structure gradient distributed catalyst layer to improve the PEMFC performance[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7241-7245.
|
3 |
WANG J J, YIN G P, SHAO Y Y, et al. Effect of carbon black support corrosion on the durability of Pt/C catalyst[J]. Journal of Power Sources, 2007, 171(2): 331-339.
|
4 |
TANG H, WANG S, JIANG S P, et al. A comparative study of CCM and hot-pressed MEAs for PEM fuel cells[J]. Journal of Power Sources, 2007, 170(1): 140-144.
|
5 |
WANG C, WANG S, ZHANG J, et al. The key materials and components for proton exchange membrane fuel cell[J]. Progress in Chemistry, 2015, 27(2/3): 310-320.
|
6 |
MIDDELMAN E. Improved PEM fuel cell electrodes by controlled self-assembly[J]. Fuel Cells Bulletin, 2002, 2002(11): 9-12.
|
7 |
TIAN Z Q, LIM S H, POH C K, et al. A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells[J]. Advanced Energy Materials, 2011, 1(6): 1205-1214.
|
8 |
TIAN Z Q, LIM S H, POH C K. Perfluorosulfonic acid-functionalized Pt/carbon nanotube catalysts with enhanced stability and performance for use in proton exchange membrane fuel cells[J]. Carbon, 2011, 49(1): 82-88.
|
9 |
SHAO Y, KOU R, WANG J, et al. The durability dependence of Pt/CNT electrocatalysts on the nanostructures of carbon nanotubes: hollow- and bamboo-CNTs[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(10): 5811-5815.
|
10 |
GAN J, ZHANG J, ZHANG B, et al. Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition[J]. Journal of Energy Chemistry, 2020, 45: 59-66.
|
11 |
BHARTI A, CHERUVALLY G, MULIANKEEZHU S. Microwave assisted, facile synthesis of Pt/CNT catalyst for proton exchange membrane fuel cell application[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11622-11631.
|
12 |
GUO L, JIANG W J, ZHANG Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Cataltalysis, 2015, 5(5): 2903-2909.
|
13 |
JHA S, BHANDARY N, BASU S, et al. Electro-deposited Pt3Co on carbon fiber paper as Nafion-free electrode for enhanced electro-catalytic activity toward oxygen reduction reaction[J]. ACS Applied Energy Materials, 2019, 2(9): 6269-6279.
|
14 |
ZHANG C, XU L, SHAN N, et al. Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres[J]. ACS Cataltalysis, 2014, 4(6): 1926-1930.
|
15 |
WU Z, LV Y, XIA Y, et al. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst[J]. Journal of the American Chemical Society, 2012, 134(4): 2236-2245.
|
16 |
SHRESTHA S, ASHEGHI S, TIMBRO J, et al. Temperature controlled surface chemistry of nitrogen-doped mesoporous carbon and its influence on Pt ORR activity[J]. Applied Catalysis A: General, 2013, 464/465: 233-242.
|
17 |
AMBROSIO E P, DUMITRESCU M A, FRANCIA C, et al. Ordered mesoporous carbons as catalyst support for PEM fuel cells[J]. Fuel Cells, 2009, 9(3): 197-200.
|
18 |
LI W Z, WANG X, CHEN Z W, et al. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell[J]. Langmuir, 2005, 21(21): 9386-9389.
|
19 |
MURATA S, IMANISHI M, HASEGAWA S, et al. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells[J]. Journal of Power Sources, 2014, 25(3): 104-113.
|
20 |
俞红梅, 姚德伟, 邵志刚, 等. 一种质子交换膜燃料电池有序催化层及其制备和应用: CN109921047A[P]. 2019-06-21.
|
|
YU Hongmei, YAO Dewei, SHAO Zhigang, et al. Preparation and application of ordered catalyst layer for proton exchange membrane fuel cell: CN109921047A[P]. 2019-06-21.
|
21 |
MARDLE P, JI X, WU J, et al. Thin film electrodes from Pt nanorods supported on aligned N-CNTs for proton exchange membrane fuel cells[J]. Applied Catalysis B: Environmenta, 2020, 260:118031.
|
22 |
邓翔, 孟宪涛,邵宗平, 等. 一种质子交换膜燃料电池的双功能有序化膜电极: CN111224137A[P]. 2020-06-02.
|
|
DENG Xiang, MENG Xiantao, SHAO Zongping, et al. A dual-function ordered membrane electrode for proton exchange membrane fuel cell: CN111224137A[P]. 2020-06-02.
|
23 |
ZHANG L, WANG L Y, HOLT C M B, et al. Oxygen reduction reaction activity and electrochemical stability of thin-film bilayer systems of platinum on niobium oxide[J]. The Journal of Physical Chemistry C, 2010, 114(39): 16463-16474.
|
24 |
SENEVIRATHNE K, HUI R, CAMPBELL S, et al. Electrocatalytic activity and durability of Pt/NbO2 and Pt/Ti4O7 nanofibers for PEM fuel cell oxygen reduction reaction[J]. Electrochimica Acta, 2012, 59: 538-547.
|
25 |
HUANG K, LI Y F, YAN L T, et al. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support[J]. RSC Advances2014, 4(19): 9701-9708.
|
26 |
HUANG C, DONG W J, DONG C L, et al. Niobium dioxide prepared by a novel La-reduced route as a promising catalyst support for Pd towards the oxygen reduction reaction[J]. Dalton Transactions, 2020, 49(5): 1398-1402.
|
27 |
HUANG S Y, GANESAN P, POPOV B N. Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell[J]. Applied Catalysis B: Environmental, 2011, 102(1/2): 71-77.
|
28 |
GUSTAVSSON M, EKSTROM H, HANARP R, et al. Thin film Pt/TiO2 catalysts for the polymer electrolyte fuel cell[J]. Journal of Power Sources, 2007, 163(2): 671-678.
|
29 |
HUANG S Y, GANESAN P, POPOV B N. Electrocatalytic activity and stability of titania-supported platinum-palladium electrocatalysts for polymer electrolyte membrane fuel cell[J]. ACS Catal., 2012, 2(5): 825-831.
|
30 |
JI Y, CHO Y I, JEON Y, et al. Design of active Pt on TiO2 based nanofibrous cathode for superior PEMFC performance and durability at high temperature[J]. Applied Catalysis B: Environmental, 2017, 204: 421-429.
|
31 |
PARK C, LEE E, LEE G, et al. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells[J]. Applied Catalysis B: Environmental, 2020, 268(5): 118414.
|
32 |
HE S Q, WU C X, SUN Z, et al. Uniform Pt nanoparticles supported on urchin-like mesoporous TiO2 hollow spheres as stable electrocatalysts for the oxygen reduction reaction[J]. Nanoscale, 2020, 12(19): 10656-10663.
|
33 |
KUMAR S, BHANGE S N, SONI R, et al. WO3 nanorods bearing interconnected Pt nanoparticle units as an activity-modulated and corrosion-resistant carbon-free system for polymer electrolyte membrane fuel cells[J]. ACS Applied Energy Materials, 2020, 3(2): 1908-1921.
|
34 |
D-H LIM, LEE W-J, WHELDON J, et al. Electrochemical characterization and durability of sputtered Pt catalysts on TiO2 nanotube arrays as a cathode material for PEFCs[J]. Journal of the Electrochemical Society, 2010, 157(6): B862-B867.
|
35 |
JIANG S, YI B, ZHANG C, et al. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2015, 276: 80-88.
|
36 |
CHEN M, WANG M, YANG Z, et al. High performance and durability of order-structured cathode catalyst layer based on TiO2@PANI core-shell nanowire arrays[J]. Applied Surface Science, 2017, 406: 69-76.
|
37 |
OZKAN S, VALLE F, MAZARE A, et al. Optimized polymer electrolyte membrane fuel cell electrode using TiO2 nanotube arrays with well-defined spacing[J]. ACS Applied Nano Materials, 2020, 3(5): 4157-4170.
|
38 |
DEBE M K, SCHMOECKEL A K, VERNSTRORN G D, et al. High voltage stability of nanostructured thin film catalysts for PEM fuel cells[J]. Journal of Power Sources, 2006, 161(2): 1002-1011.
|
39 |
STEINBACH A, VLIET D V D, DURU C, et al. V.C.1 High-performance, durable, low-cost membrane electrode assemblies for transportation applications[R]. DOE Hydrogen and Fuel Cells Program, 2014.
|
40 |
DU S, POLLEE B G. Catalyst loading for Pt-nanowire thin film electrodes in PEFCs[J]. International Journal of Hydrogen Energy, 2012, 37(23): 17892-17898.
|
41 |
JIANG S, YI B, CAO L, et al. Development of advanced catalytic layer based on vertically aligned conductive polymer arrays for thin-film fuel cell electrodes[J]. Journal of Power Sources, 2016, 329: 347-354.
|
42 |
ZENG Y, ZHANG H, WANG Z, et al. Nano-engineering of a 3D-ordered membrane electrode assembly with ultrathin Pt skin on open-walled PdCo nanotube arrays for fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(15): 6521-6533.
|
43 |
DENG R, XIA Z, SUN R, et al. Nanostructured ultrathin catalyst layer with ordered platinum nanotube arrays for polymer electrolyte membrane fuel cells[J]. Journal of Energy Chemistry, 2020, 43: 33-39.
|
44 |
TAMURA T, KAWAKAMI H. Aligned lctropun nanofiber composite membranes for fuel cell electrolytes[J]. Nano Letters, 2010, 10: 1324-1328.
|
45 |
LEE C, JO S, CHOI J, et al. SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells[J]. Journal of Materials Science, 2013, 48(10): 3665-3671.
|
46 |
张剑波, 周红茹, 司德春, 等. 一种有序化纳米纤维膜电极及其制备方法: CN107359355A [P]. 2017-11-17.
|
|
ZHANG Jianbo, ZHOU Hongru, SI Dechun, et al. A kind of ordered nanofiber membrane electrode and its preparation method: CN 107359355A [P]. 2017-11-17.
|
47 |
NING F, BAI C, QIN J, et al. Great improvement in the performance and lifetime of a fuel cell using a highly dense, well-ordered, and cone-shaped Nation array[J]. Journal of Materials Chemistry A, 2020, 8(11): 5489-5500.
|