化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4696-4702.DOI: 10.16085/j.issn.1000-6613.2021-0742
收稿日期:
2021-04-09
修回日期:
2021-07-06
出版日期:
2021-09-05
发布日期:
2021-09-13
通讯作者:
于畅,邱介山
作者简介:
黄红菱(1996—),女,博士研究生,研究方向为电化学催化。E-mail:基金资助:
HUANG Hongling1(), YU Chang1(), QIU Jieshan2()
Received:
2021-04-09
Revised:
2021-07-06
Online:
2021-09-05
Published:
2021-09-13
Contact:
YU Chang,QIU Jieshan
摘要:
以风力/太阳能等为代表的间歇性可再生能源发电技术为能源快速发展注入了新的活力和契机。为此,发展这些电能的高效转换与存储体系至关重要,已成为当今世界范围内的重大挑战性课题之一。基于此,本文讨论和展望了化学工程视野下的电化学能源转换与存储技术的未来发展方向,为解决该领域工业化发展中的关键科学和技术问题提供了有效指导,将全面促进电化学能源转换与存储领域的快速发展。文章从化学工程的视角综述了电化学能源转换与存储技术(二次电池、超级电容器、电化学催化等)的国内外研究发展状况,指出并剖析了该体系存在的关键科学/技术问题,主要内容包括电化学能源转换与存储领域中的三传一反、系统工程、分离工程以及绿色节能新策略等。
中图分类号:
黄红菱, 于畅, 邱介山. 化学工程视野下的电化学能源转换与存储[J]. 化工进展, 2021, 40(9): 4696-4702.
HUANG Hongling, YU Chang, QIU Jieshan. Electrochemical energy conversion and storage based on chemical engineering[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4696-4702.
1 | 苏文礼, 范煜. 金属基材料电催化CO2还原的研究进展[J]. 化工进展, 2021, 40(3): 1384-1394. |
SU Wenli, FAN Yu. Progress of electrocatalytic reduction of CO2 on metal-based materials[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1384-1394. | |
2 | KWAK W J, ROSY, SHARON D, et al. Lithium-oxygen batteries and related systems: potential, status, and future[J]. Chemical Reviews, 2020, 120(14): 6626-6683. |
3 | FAN E, LI L, WANG Z, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
4 | XIE Y Y, ZHANG W M, GU S, et al. Process engineering in electrochemical energy devices innovation[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 39-47. |
5 | HUANG H W, ZHOU S, YU C, et al. Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting[J]. Energy & Environmental Science, 2020, 13(2): 545-553. |
6 | REN Y W, YU C, TAN X Y, et al. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(3): 1176-1193. |
7 | TAN X Y, YU C, REN Y W, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction[J]. Energy & Environmental Science, 2021, 14(2): 765-780. |
8 | YOU B, SUN Y. Innovative strategies for electrocatalytic water splitting[J]. Accounts of Chemical Research, 2018, 51(7): 1571-1580. |
9 | GUO W, YU C, LI S F, et al. Toward commercial-level mass-loading electrodes for supercapacitors: opportunities, challenges and perspectives[J]. Energy & Environmental Science, 2021, 14(2): 576-601. |
10 | YANG X W, CHENG C, WANG Y F, et al. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage[J]. Science, 2013, 341(6145): 534-537. |
11 | LIU K L, YU C, GUO W, et al. Recent research advances of self-discharge in supercapacitors: mechanisms and suppressing strategies[J]. Journal of Energy Chemistry, 2021, 58: 94-109. |
12 | XU M, LIU Y H, YU Q, et al. Phenylenediamine-formaldehyde chemistry derived N-doped hollow carbon spheres for high-energy-density supercapacitors[J]. Chinese Chemical Letters, 2021, 32(1): 184-189. |
13 | ZHAO C T, YU C, ZHANG M D, et al. Tailor-made graphene aerogels with inbuilt baffle plates by charge-induced template-directed assembly for high-performance Li–S batteries[J]. Journal of Materials Chemistry A, 2015, 3(43): 21842-21848. |
14 | CHANG J W, SONG X D, YU C, et al. Gravity field-mediated synthesis of carbon-conjugated quantum dots with tunable defective density for enhanced triiodide reduction[J]. Nano Energy, 2020, 69: 104377. |
15 | LIU Y Y, ZHU Y Y, CUI Y. Challenges and opportunities towards fast-charging battery materials[J]. Nature Energy, 2019, 4(7): 540-550. |
16 | LIU X, REN D S, HSU H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. |
17 | WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515-518. |
18 | ZHAO C T, YU C, ZHANG M D, et al. Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers[J]. Nano Energy, 2017, 41: 66-74. |
19 | ZHAO C T, YU C, QIU B, et al. Ultrahigh rate and long-life sodium-ion batteries enabled by engineered surface and near-surface reactions[J]. Advanced Materials, 2018, 30(7): 1702486. |
20 | YU J H, YU C, GUO W, et al. Decoupling and correlating the ion transport by engineering 2D carbon nanosheets for enhanced charge storage[J]. Nano Energy, 2019, 64: 103921. |
21 | LEE G, LI Y C, KIM J Y, et al. Electrochemical upgrade of CO2 from amine capture solution[J]. Nature Energy, 2021, 6(1): 46-53. |
22 | LEOW W R, LUM Y, OZDEN A, et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density[J]. Science, 2020, 368(6496): 1228-1233. |
23 | WANG Y W, HE J T, LIU C C, et al. Thermodynamics versus kinetics in nanosynthesis[J]. Angewandte Chemie International Edition, 2015, 54(7): 2022-2051. |
24 | YANG J, ZENG Z Y, KANG J, et al. Formation of two-dimensional transition metal oxide nanosheets with nanoparticles as intermediates[J]. Nature Materials, 2019, 18(9): 970-976. |
25 | LAO Z X, HU Y L, ZHANG C C, et al. Capillary force driven self-assembly of anisotropic hierarchical structures prepared by femtosecond laser 3D printing and their applications in crystallizing microparticles[J]. ACS Nano, 2015, 9(12): 12060-12069. |
26 | HOU C Y, ZHANG M W, KASAMA T, et al. Reagent-free synthesis and plasmonic antioxidation of unique nanostructured metal-metal oxide core-shell microfibers[J]. Advanced Materials, 2016, 28(21): 4097-4104. |
27 | LIU T, DOU X Y, XU Y H, et al. In situ investigation of dynamic silver crystallization driven by chemical reaction and diffusion[J]. Research, 2020, 2020: 1-11. |
28 | CHENG H, CUI P X, WANG F R, et al. High efficiency electrochemical nitrogen fixation achieved with a lower pressure reaction system by changing the chemical equilibrium[J]. Angewandte Chemie International Edition, 2019, 131(43): 15687-15693. |
29 | 章冬云, 马紫峰, 原鲜霞. 乙醇电催化氧化反应动力学分析与研究进展[J]. 化工进展, 2005, 24(2): 126-131. |
ZHANG Dongyun, MA Zifeng, YUAN Xianxia. Analysis and investigation of the reaction kinetics for the electrocatalytic oxidation of ethanol[J]. Chemical Industry and Engineering Progress, 2005, 24(2): 126-131. | |
30 | HAN X T, SHENG H Y, YU C, et al. Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts[J]. ACS Catalysis, 2020, 10(12): 6741-6752. |
31 | GREENBLATT J B, MILLER D J, AGER J W, et al. The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products[J]. Joule, 2018, 2(3): 381-420. |
32 | LAGADEC M F, GRIMAUD A. Water electrolysers with closed and open electrochemical systems[J]. Nature Materials, 2020, 19(11): 1140-1150. |
33 | DOTAN H, LANDMAN A, SHEEHAN S W, et al. Decoupled hydrogen and oxygen evolution by a two-step electrochemical-chemical cycle for efficient overall water splitting[J]. Nature Energy, 2019, 4(9): 786-795. |
34 | HUANG H L, YU C, HAN X T, et al. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400mA·cm-2[J]. Energy & Environmental Science, 2020, 13(12): 4990-4999. |
35 | 王振帅, 邢宝林, 韩学锋, 等. 煤沥青基微晶炭的制备及其储锂性能[J]. 化工进展, 2021, 40(1): 313-323. |
WANG Zhenshuai, XING Baolin, HAN Xuefeng, et al. Preparation of coal tar pitch-based microcrystal carbons and their lithium storage properties[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 313-323. | |
36 | GUO Z, XIAO N, LI H Q, et al. Achieving efficient electroreduction CO2 to CO in a wide potential range over pitch-derived ordered mesoporous carbon with engineered Ni-N sites[J]. Journal of CO2 Utilization, 2020, 38: 212-219. |
37 | XIAO N, WEI Y B, LI H Q, et al. Boosting the sodium storage performance of coal-based carbon materials through structure modification by solvent extraction[J]. Carbon, 2020, 162: 431-437. |
38 | XIE X Y, HE X J, ZHANG H F, et al. Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors[J]. Chemical Engineering Journal, 2018, 350: 49-56. |
39 | 李德念, 陈会兵, 阳济章, 等. 生物质焦油衍生氮掺杂多孔碳负载Co3O4纳米晶的制备及双功能氧反应催化[J]. 化工进展, 2020, 39(11): 4446-4455. |
LI Denian, CHEN Huibing, YANG Jizhang, et al. Biomass tar-derived carbon doped with nitrogen to load Co3O4 nanocrystals as efficient bifunctional catalyst for oxygen reduction and evolution[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4446-4455. | |
40 | 杨蒙蒙, 姚卫棠. 生物质碳材料在钾离子电池负极材料中的应用[J]. 化工进展, 2021, 40(3): 1495-1505. |
YANG Mengmeng, YAO Weitang. Application of biomass carbonmaterial in anodematerial of potassium ion battery[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1495-1505. | |
41 | LI C, WANG Y W, XIAO N, et al. Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction[J]. Carbon, 2019, 151: 46-52. |
42 | LI H Q, XIAO N, WANG Y W, et al. Promoting the electroreduction of CO2 with oxygen vacancies on a plasma-activated SnOx/carbon foam monolithic electrode[J]. Journal of Materials Chemistry A, 2020, 8(4): 1779-1786. |
43 | WANG Y W, XIAO N, WANG Z Y, et al. Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch[J]. Chemical Engineering Journal, 2018, 342: 52-60. |
44 | ZHU J Y, ZHANG S, WANG L X, et al. Engineering cross-linking by coal-based graphene quantum dots toward tough, flexible, and hydrophobic electrospun carbon nanofiber fabrics[J]. Carbon, 2018, 129: 54-62. |
45 | GAO F, QU J Y, ZHAO Z B, et al. A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application[J]. Carbon, 2014, 80: 640-650. |
46 | FAN X M, YU C, YANG J, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors[J]. Advanced Energy Materials, 2015, 5(7): 1401761. |
47 | ZHANG P, SONG X D, YU C, et al. Biomass-derived carbon nanospheres with turbostratic structure as metal-free catalysts for selective hydrogenation of o-chloronitrobenzene[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7481-7485. |
48 | LING Z, WANG Z Y, ZHANG M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119. |
49 | ZHANG M D, YU C, LING Z, et al. A recyclable route to produce biochar with a tailored structure and surface chemistry for enhanced charge storage[J]. Green Chemistry, 2019, 21(8): 2095-2103. |
50 | LIU N, WANG X Z, XU W Y, et al. Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization[J]. Fuel, 2014, 119: 163-169. |
51 | HE X J, LI R C, QIU J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50(13): 4911-4921. |
52 | HU H, ZHAO Z B, ZHOU Q, et al. The role of microwave absorption on formation of graphene from graphite oxide[J]. Carbon, 2012, 50(9): 3267-3273. |
53 | HE X J, GENG Y J, QIU J S, et al. Effect of activation time on the properties of activated carbons prepared by microwave-assisted activation for electric double layer capacitors[J]. Carbon, 2010, 48(5): 1662-1669. |
54 | WANG Z, YU C, HUANG H W, et al. Carbon-enabled microwave chemistry: from interaction mechanisms to nanomaterial manufacturing[J]. Nano Energy, 2021, 85: 106027. |
55 | HUANG H W, YU C, HUANG H L, et al. Microwave-assisted ultrafast synthesis of molybdenum carbide nanoparticles grown on carbon matrix for efficient hydrogen evolution reaction[J]. Small Methods, 2019, 3(11): 1900259. |
56 | WANG Z, YU C, HUANG H W, et al. Energy accumulation enabling fast synthesis of intercalated graphite and operando decoupling for lithium storage[J]. Advanced Functional Materials, 2021, 31(15): 2009801. |
[1] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[5] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[6] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[7] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[10] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[11] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[12] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[13] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[14] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[15] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |