化工进展 ›› 2021, Vol. 40 ›› Issue (9): 4687-4695.DOI: 10.16085/j.issn.1000-6613.2021-1613

• 专刊:新能源化工 • 上一篇    下一篇

新能源化工技术

马紫峰1(), 贺益君1, 陈建峰2   

  1. 1.上海交通大学化学化工学院,上海 200240
    2.北京化工大学化学工程学院,北京 100029
  • 收稿日期:2021-07-01 修回日期:2021-07-29 出版日期:2021-09-05 发布日期:2021-09-13
  • 通讯作者: 马紫峰
  • 作者简介:马紫峰(1963—),男,博士,教授,研究方向为电化学能源工程。E-mail: zfma@sjtu.edu.cn
  • 基金资助:
    国家自然科学基金(21938005)

Renewable energy chemical engineering and technology

MA Zifeng1(), HE Yijun1, CHEN Jianfeng2   

  1. 1.School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    2.School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2021-07-01 Revised:2021-07-29 Online:2021-09-05 Published:2021-09-13
  • Contact: MA Zifeng

摘要:

发展新能源是实现“碳中和”战略目标的必由之路。本文首先勾画出可再生能源转换利用基本途径,指出新能源化工技术研究的理论基础是电化学工程、光化学工程、生物化学工程、分子化学工程、系统工程和人工智能等;其次,以可再生能源制氢、燃料电池发电与化学品共生、太阳能转换过程为例,阐明可再生能源资源转换中的化工问题;第三,通过对锂离子电池和钠离子电池中多元过渡金属氧化物正极材料及其电极制备过程开发,揭示电化学储能材料与器件制造过程工程特性;第四,介绍了化工系统工程和人工智能在电池状态预测模型构建、综合能源系统管理、光-储-充系统集成与优化运行中的应用。最后,根据各种案例分析,归纳出新能源化工研究的本质是将新能源转换与储存中涉及的“生物/光/电化学反应”,从实验室放大到规模化生产装置,阐明反应中的传质、传热和传荷机理及其反应工程特性。对未来新能源化工技术研发,从“共性科学问题”和“关键技术”两个层面提出了若干研究方向以供参考。

关键词: 可再生能源, 储能, 生物化学工程, 电化学工程, 光化学工程

Abstract:

Exploiting renewable energy sources is the only way to achieve carbon neutrality. This perspective first outlined the key strategies for the conversion and utilization of renewable energy, and stated that the theoretical foundation of new energy chemical engineering and technology covered various engineering science including the electrochemical engineering, photochemical engineering, biochemical engineering, molecular chemical engineering, systems engineering, and artificial intelligence, etc. Secondly, taking hydrogen generation from renewable power, fuel cells for chemical and energy cogeneration, solar energy conversion as examples, we elucidated the role of chemical engineering in the process of renewable energy conversion and utilization. Thirdly, we revealed the process engineering characteristics of electrochemical energy storage materials and devices according to the manufacturing process of multi-element transition metal oxide cathodes for lithium- and sodium-ion batteries. Fourthly, we introduced the applications of process system engineering and artificial intelligence in the construction of a battery state of charge/health/power prediction model, integrated energy system management, as well as optimal photovoltaic-energy storage-charge system. Finally, based on detailed case studies, we concluded that the essence of renewable energy chemical engineering is the scaling up of bio-, photo- and electro-chemical reactions involved in renewable energy conversion and storage from laboratory-scale to large-scale devices, and to elucidate the corresponding mass, heat and charge transfer mechanisms and the reaction engineering characteristics. Regarding the future research and development of renewable energy chemical engineering technology, multiple research directions were proposed in respect of the common scientific issues and key technologies.

Key words: renewable energy, energy storage, biochemical engineering, electrochemical engineering, photochemical engineering

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn