1 |
谭天伟,陈必强,张会丽,等. 加快推进绿色生物制造助力实现“碳中和”[J].化工进展,2021,40(3): 1137-1141.
|
|
TAN Tianwei, CHEN Biqiang, ZHANG Huili, et al. Accelerate promotion of green bio-manufacturing to help achieve “carbon neutrality”[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1137-1141.
|
2 |
王利霞,闫继,贾晓东. 现代电化学工程[M]. 北京:化学工业出版社,2019.
|
|
WANG Lixia, YAN Ji, JIA Xiaodong. Modern electrochemical engineering[M]. Beijing: Chemical Industry Press, 2019.
|
3 |
GU Shuang, XU Bingjun, YAN Yushan. Electrochemical energy engineering: a new frontier of chemical engineering innovation[J]. Annual Review of Chemical and Biomolecular Engineering, 2014, 5:429-454.
|
4 |
李灿. 太阳能转化科学与技术[M]. 北京: 科学出版社, 2020.
|
|
LI Can. Solar energy conversion science and technology[M]. Beijing: Science Press, 2020.
|
5 |
岳国君,林海龙,彭元亭, 等. 以生物质为原料的未来绿色氢能[J].化工进展, 2021, 40(8): 4678-4684.
|
|
YUE Guojun, LIN Hailong, PENG Yuanting, et al. Future green hydrogen energy from biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4678-4684.
|
6 |
王梦, 田晓俊, 陈必强, 等. 生物燃料乙醇产业未来发展的新模式[J]. 中国工程科学, 2020, 22(2): 47-54.
|
|
WANG Meng, TIAN Xiaojun, CHEN Biqiang, et al. Future modes of fuel bioethanol industry[J]. Strategic Study of CAE, 2020, 22(2): 47-54.
|
7 |
陈建峰,王丹,蒲源,等. 分子化学工程——创造美好未来[C]//中国工程院化工、冶金与材料工程第十一届学术会议, 北京, 2016:17-21.
|
|
CHEN Jianfeng,WANG Dan,PU Yuan,et al. Molecular chemical engineering——to create a bright future[C]//Proceedings of the 11th Symposium on Chemical, metallurgy and Materials Engineering, of Chinese Academy of Engineering, Beijing, 2016: 17-21.
|
8 |
吴飞,阳春华,兰旭光,等. 人工智能的回顾与展望[J]. 中国科学基金,2018,32(3): 243-250.
|
|
WU Fei, YANG Chunhua, LAN Xuguang, et al. Artificial intelligence: review and future opportunities[J]. Bulletin of National Natural Science Foundation of China, 2018, 32(3): 243-250.
|
9 |
钱锋.人工智能赋能流程制造[J]. 科技导报,2020,38(22): 1.
|
|
QIAN Feng. AI enpowers process manufacturing[J]. Science & Technology Review, 2020,38(22): 1.
|
10 |
宝丰能源电解水制氢项目投产[EB/OL]. .
|
|
Hydrogen production project by electrolyzing water was finished by Baofeng energy[EB/OL]. .
|
11 |
陈洪章, 马力通. 生物质产业关键技术突破与产业前景[J]. 工程研究-跨学科视野中的工程, 2012, 4(3): 237-244.
|
|
CHEN Hongzhang, MA Litong. Breakthroughs in key technologies and prospects of the biomass industry[J]. Journal of Engineering Studies, 2012, 4(3): 237-244.
|
12 |
LIU Wei, LIU Congmin, GOGOI Parikshit, et al. Overview of biomass conversion to electricity and hydrogen and recent developments in low-temperature electrochemical approaches[J]. Engineering, 2020, 6(12): 1351-1363.
|
13 |
黄学杰, 赵文武, 邵志刚, 等. 我国新型能源材料发展战略研究[J]. 中国工程科学, 2020, 22(5): 60-67.
|
|
HUANG Xuejie, ZHAO Wenwu, SHAO Zhigang, et al. Development strategies for new energy materials in China[J]. Strategic Study of CAE, 2020, 22(5): 60-67.
|
14 |
JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369.
|
15 |
YUAN Xiaozi, MA Zifeng, JIANG Qizhong, et al. Cogeneration of cyclohexylamine and electrical power using PEM fuel cell reactor[J]. Electrochemistry Communications, 2001, 3(11): 599-602.
|
16 |
郑志林,袁晓姿,尹屹梅,等. 燃料电池反应器在化学品与电能共生中应用[J].电化学,2018,24(6): 615-627.
|
|
ZHENG Zhilin, YUAN Xiaozi, YIN Yimei, et al. Fuel cells reactor for chemicals and electric energy cogeneration[J]. Journal of Electrochemistry, 2018, 24(6): 615-627.
|
17 |
CHE Haiying, YANG Xinrong, YU Yan, et al. Engineering optimization approach of nonaqueous electrolyte for sodium ion battery with long cycle life and safety[J]. Green Energy & Environment, 2021, 6(2): 212-219.
|
18 |
陈建峰. 超重力技术及应用[M]. 2版. 北京: 化学工业出版社,2021.
|
|
CHEN Jianfeng. High gravity technology and application[M]. 2nd ed. Beijing: Chemical Industry Press, 2021.
|
19 |
NIU Yuchao, DU Shaofu, SHENG Lei, et al. High-efficient crystal particle manufacture by microscale process intensification technology[J]. Green Chemical Engineering, 2021, 2(1): 57-69.
|
20 |
LI Jingkun, MA Zifeng. Past and present of LiFePO4: from fundamental research to industrial applications[J]. Chem., 2019, 5(1): 3-6.
|
21 |
MA Zifeng, GAO Han, HADER Ross, et al. Revealing the structural evolution and phase transformation of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material on sintering and cycling processes[J]. ACS Applied Energy Materials, 2020, 3(7): 6107-6114.
|
22 |
XIE Yingying, ZHANG Weimin, GU Shuang, et al. Process engineering in electrochemical energy devices innovation[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 39-47.
|
23 |
HE Yijun, SHEN Jiani, MA Zifeng. State of health estimation of lithium-ion batteries: a multiscale gaussian process regression modeling approach[J]. AIChE Journal, 2015, 61(5): 1589-1600.
|
24 |
SHEN Jiani, SHEN Jiajin, HE Yijun, et al. Accurate state of charge estimation with model mismatch for Li-ion batteries: a joint moving horizon estimation approach[J]. IEEE Transactions on Power Electronics, 2019, 34(5): 4329-4342.
|
25 |
冯一峰,沈佳妮,车海英,等. 钠离子电池健康状态预测[J]. 储能科学与技术,2021, 10(4): 1407-1415.
|
|
FENG Yifeng, SHEN Jiani, CHE Haiying, et al. State of health prediction for sodium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4): 1407-1415.
|
26 |
PARAG Y, SOVACOOL B K. Electricity market design for the prosumer era[J]. Nature Energy, 2016, 1(4): 16032.
|
27 |
BOUAKKAZ A, MENA A J G, HADDAD S, et al. Efficient energy scheduling considering cost reduction and energy saving in hybrid energy system with energy storage[J]. Journal of Energy Storage, 2021, 33: 101887.
|
28 |
CHE Haiying, ZHANG Ziyu, YU Xinhai, et al. A novel integrated energy systems combining methanol reformed fuel cell with sodium ion battery[J]. Green Chemical Engineering, .
|
29 |
熊珞琳,毛帅,唐漾,等. 基于强化学习的综合能源系统管理综述[J].自动化学报,2021.DOI: 10. 16383/j. aas.cz10166.
|
|
XIONG Luolin, MAO Shuai, TANG Yang, et al. Reinforcement learning based integrated energy system management: a survey[J]. Acta Automatica Sinica, 2021.DOI: 10. 16383/j. aas.cz10166.
|
30 |
DONG Xiaojian, SHEN Jiani, HE Guoxin, et al. A general radial basis function neural network assisted hybrid modeling method for photovoltaic cell operating temperature prediction[J]. Energy, 2021, 234: 121212.
|