1 |
ZHANG W, SUN X, TANG Y, et al. Lowering charge transfer barrier of LiMn2O4via nickel surface doping to enhance Li+ intercalation kinetics at subzero temperatures[J]. Journal of the American Chemical Society, 2019, 141(36): 14038-14042.
|
2 |
张英杰, 宁培超, 杨轩, 等. 废旧三元锂离子电池回收技术研究新进展[J]. 化工进展, 2020, 39(7): 2828-2840.
|
|
ZHANG Yingjie, NING Peichao, YANG Xuan, et al. Research progress on the recycling technology of spent ternary lithium ion battery[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2828-2840.
|
3 |
ZUO C, HU Z, QI R, et al. Double the capacity of manganese spinel for lithium-ion storage by suppression of cooperative Jahn-Teller distortion[J]. Advanced Energy Materials, 2020, 10(34): 2000363.
|
4 |
MAO F, GUO W, MA J. Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes[J]. RSC Advances, 2015, 5(127): 105248-105258.
|
5 |
ANGELOPOULOU P, PALOUKIS F, SŁOWIK G, et al. Combustion-synthesized LixMn2O4-based spinel nanorods as cathode materials for lithium-ion batteries[J]. Chemical Engineering Journal, 2017, 311: 191-202.
|
6 |
HIROSE S H, KODERA T, OGIHARA T. Synthesis and electrochemical properties of Li-rich spinel type LiMn2O4 powders by spray pyrolysis using aqueous solution of manganese carbonate[J]. Journal of Alloys and Compounds, 2010, 506(2): 883-887.
|
7 |
CHEN M, CHEN P, YANG F, et al. Ni,Mo co-doped lithium manganate with significantly enhanced discharge capacity and cycling stability[J]. Electrochimica Acta, 2016, 206: 356-365.
|
8 |
FANG D L, LI J C, LIU X, et al. Synthesis of a Co-Ni doped LiMn2O4 spinel cathode material for high-power Li-ion batteries by a sol-gel mediated solid-state route[J]. Journal of Alloys and Compounds, 2015, 640: 82-89.
|
9 |
LIU H, TIAN R, JIANG Y, et al. On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route[J]. Electrochimica Acta, 2015, 180: 138-146.
|
10 |
CAO J, GUO S, YAN R, et al. Carbon-coated single-crystalline LiMn2O4 nanowires synthesized by high-temperature solid-state reaction with high capacity for Li-ion battery[J]. Journal of Alloys and Compounds, 2018, 741: 1-6.
|
11 |
KIM J S, KIM K, CHO W, et al. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Letters, 2012, 12(12): 6358-6365.
|
12 |
杨茗佳, 陈猛, 张维维. LiFexMn2-xO4材料的制备与性能研究[J]. 电池工业, 2008, 13(6): 393-396.
|
|
YANG Mingjia, CHEN Meng, ZHANG Weiwei. Research on preparation and property of LiFexMn2-xO4[J]. Chinese Battery Industry, 2008, 13(6): 393-396.
|
13 |
GU H, WANG G, ZHU C, et al. Correlating cycle performance improvement and structural alleviation in LiMn2-xMxO4 spinel cathode materials: a systematic study on the effects of metal-ion doping[J]. Electrochimica Acta, 2019, 298: 806-817.
|
14 |
SINGH P, SIL A, NATH M, et al. Preparation and characterization of lithium manganese oxide cubic spinel Li1.03Mn1.97O4 doped with Mg and Fe[J]. Physica B: Condensed Matter, 2010, 405(2): 649-654.
|
15 |
DUAN Y Z, GUO J M, XIANG M W, et al. Single crystalline polyhedral LiNixMn2-xO4 as high-performance cathodes for ultralong cycling lithium-ion batteries[J]. Solid State Ionics, 2018, 326: 100-109.
|
16 |
YU Y, XIANG M W, GUO J M, et al. Enhancing high-rate and elevated-temperature properties of Ni-Mg co-doped LiMn2O4 cathodes for Li-ion batteries[J]. Journal of Colloid and Interface Science, 2019, 555: 64-71.
|
17 |
DENG Y, ZHOU Y, SHI Z, et al. Porous LiMn2O4 microspheres as durable high power cathode materials for lithium ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(28): 8170-8177.
|
18 |
HUANG S, WU H, CHEN P, et al. Facile pH-mediated synthesis of morphology-tunable MnCO3 and their transformation to truncated octahedral spinel LiMn2O4 cathode materials for superior lithium storage[J]. Journal of Materials Chemistry A, 2015, 3(7): 3633-3640.
|
19 |
HWANG B, KIM S, LEE Y, et al. Truncated octahedral LiMn2O4 cathode for high-performance lithium-ion batteries[J]. Materials Chemistry and Physics, 2015, 158: 138-143.
|
20 |
JIANG C, TANG Z, WANG S, et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 144-148.
|
21 |
Xia Y, WANG H, ZHANG Q, et al. Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries[J]. Journal of Power Sources, 2007, 166(2): 485-491.
|
22 |
YOSHIO M, NOGUCHI H, WANG H, et al. Correlation of oxygen deficiency with discharge capacity at 3.2 V for (LiMn)3O4-z[J]. Journal of Power Sources, 2006, 154(1): 273-275.
|
23 |
ZHU C, LIU J, YU X, et al. Boosting the stable Li storage performance in one-dimensional LiLaxMn2-xO4 nanorods at elevated temperature[J]. Ceramics International, 2019, 45(15): 19351-19359.
|
24 |
JIANG C, TANG Z, WANG S, et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 144-148.
|
25 |
ZHANG C, LIU X, SU Q, et al. Enhancing electrochemical performance of LiMn2O4 cathode material at elevated temperature by uniform nanosized TiO2 coating[J]. ACS Sustainable Chemistry & Engineering, 2016, 5(1): 640-647.
|
26 |
CHOU S, WANG J, LIU H, et al. Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery[J]. The Journal of Physical Chemistry C, 2011, 115(32): 16220-16227.
|
27 |
于月, 向明武, 白红丽, 等. 固相燃烧法快速合成LiNi0.03Mg0.10Mn1.87O4正极材料及电性能研究[J]. 稀有金属材料与工程, 2020, 49(4): 1437-1444.
|
|
YU Yue, XIANG Mingwu, BAI Hongli, et al. Rapid synthesis of LiNi0.03Mg0.10Mn1.87O4 cathode material by solid-state combustion method and its electrochemical properties[J]. Rare Metal Materials and Engineering, 2020, 49(4): 1437-1444.
|