化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3923-3931.DOI: 10.16085/j.issn.1000-6613.2020-1587
高豪1(), 陆家声1, 章文明1,2, 董维亮1,2, 方艳1,2, 余子夷3, 信丰学1,2(), 姜岷1,2()
收稿日期:
2020-08-10
修回日期:
2020-10-20
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
信丰学,姜岷
作者简介:
高豪(1995—),男,博士研究生,研究方向为合成生物学、生物催化剂固定化技术。E-mail:基金资助:
GAO Hao1(), LU Jiasheng1, ZHANG Wenming1,2, DONG Weiliang1,2, FANG Yan1,2, YU Ziyi3, XIN Fengxue1,2(), JIANG Min1,2()
Received:
2020-08-10
Revised:
2020-10-20
Online:
2021-07-06
Published:
2021-07-19
Contact:
XIN Fengxue,JIANG Min
摘要:
细胞固定化技术具有高效、反应操作简便、能长时间保持细胞活力且可反复利用、稳定性好、耐受性强等优点,在生物发酵等领域显示出巨大的应用潜力。本文介绍了近年来高分子载体材料、无机载体材料和复合载体材料的细胞固定化技术在生物发酵领域的研究进展,分析了不同材料介导固定化细胞在复杂的环境,如低或高pH、毒性底物和高浓度产物等条件下与游离细胞生长代谢性能差异;并阐述了新型高分子膜材料(中空纤维膜和微米/纳米纤维膜)作为载体在生物发酵中的优势和应用;最后展望了通过设计新型优良聚合物载体来实现人工混菌体系在生物发酵中的可控性和鲁棒性。材料作为生物与非生物中物质界面上的活性和可调成分,为细胞提供了适宜的微环境,在生物发酵领域将得到更广泛应用。
中图分类号:
高豪, 陆家声, 章文明, 董维亮, 方艳, 余子夷, 信丰学, 姜岷. 材料介导细胞固定化技术在生物发酵中的应用[J]. 化工进展, 2021, 40(7): 3923-3931.
GAO Hao, LU Jiasheng, ZHANG Wenming, DONG Weiliang, FANG Yan, YU Ziyi, XIN Fengxue, JIANG Min. Application of material-mediated cell immobilization technology in biological fermentation[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3923-3931.
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
海藻酸钙凝胶 | C. thermocellum C. thermolacticum | 包埋 | 乙醇 | 乙醇的产率接近理论效率的85% | [ |
海藻酸钙凝胶 | Candida shehatae Saccharomyces cerevisiae | 包埋 | 乙醇 | 发酵时间缩短16.67%,乙醇产量提高了12.12% | [ |
果胶酸钙凝胶 | L. casei | 包埋 | 乳酸 | 乳酸的转化率为94.37%,乳酸的产量为32.95g·L-1 | [ |
壳聚糖凝胶 | Enterococcus faecalis | 包埋 | L-瓜氨酸 | 建立了L-瓜氨酸工业生产工艺 | [ |
海藻酸钠-壳聚糖凝胶 | S. cerevisiae P. tannophilus | 包埋 | 乙醇 | 凝胶稳定,乙醇浓度为20.04g·L-1 | [ |
海藻酸钙凝胶珠 | L. rhamnosus | 包埋 | 酸 | 优化了最佳的固定化条件 | [ |
表1 利用天然高分子材料固定细胞进行生物发酵
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
海藻酸钙凝胶 | C. thermocellum C. thermolacticum | 包埋 | 乙醇 | 乙醇的产率接近理论效率的85% | [ |
海藻酸钙凝胶 | Candida shehatae Saccharomyces cerevisiae | 包埋 | 乙醇 | 发酵时间缩短16.67%,乙醇产量提高了12.12% | [ |
果胶酸钙凝胶 | L. casei | 包埋 | 乳酸 | 乳酸的转化率为94.37%,乳酸的产量为32.95g·L-1 | [ |
壳聚糖凝胶 | Enterococcus faecalis | 包埋 | L-瓜氨酸 | 建立了L-瓜氨酸工业生产工艺 | [ |
海藻酸钠-壳聚糖凝胶 | S. cerevisiae P. tannophilus | 包埋 | 乙醇 | 凝胶稳定,乙醇浓度为20.04g·L-1 | [ |
海藻酸钙凝胶珠 | L. rhamnosus | 包埋 | 酸 | 优化了最佳的固定化条件 | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚酰胺(尼龙) | P. acidipropionici | 吸附 | 丙酸 | 丙酸生产强度和产量分别为0.46g·L-1·h-1和25.8g·L-1 | [ |
聚乙烯醇凝胶 | C. acetobutylicum | 包埋 | 丁醇 | 丁醇生产强度达0.57g·L-1·h-1 | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 凝胶具有良好的渗透特性,细胞完全保留在聚合物凝胶中 | [ |
聚乳酸微管阵列膜 | Lb. acidophilus | 包埋 | 乳酸 | 包埋效率高、稳定性好 | [ |
聚乙烯醇水凝胶 | C. butyricum | 包埋 | 1,3-丙二醇 | 稳定性好,生产强度提高 | [ |
聚乙烯醇水凝胶 | Zymomonas mobilis | 包埋 | 乙醇 | 乙醇产量提高100%(31.09g·L-1·h-1) | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 产物转化率为85%~90% | [ |
表2 利用人工合成高分子材料固定细胞进行生物发酵
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚酰胺(尼龙) | P. acidipropionici | 吸附 | 丙酸 | 丙酸生产强度和产量分别为0.46g·L-1·h-1和25.8g·L-1 | [ |
聚乙烯醇凝胶 | C. acetobutylicum | 包埋 | 丁醇 | 丁醇生产强度达0.57g·L-1·h-1 | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 凝胶具有良好的渗透特性,细胞完全保留在聚合物凝胶中 | [ |
聚乳酸微管阵列膜 | Lb. acidophilus | 包埋 | 乳酸 | 包埋效率高、稳定性好 | [ |
聚乙烯醇水凝胶 | C. butyricum | 包埋 | 1,3-丙二醇 | 稳定性好,生产强度提高 | [ |
聚乙烯醇水凝胶 | Zymomonas mobilis | 包埋 | 乙醇 | 乙醇产量提高100%(31.09g·L-1·h-1) | [ |
聚丙烯酰胺凝胶 | L. rhamnosus | 包埋 | 乳酸 | 产物转化率为85%~90% | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
活性炭 | C. acetobutylicum | 吸附 | 氢和丁醇 | 生物膜的形成强化了氢气和丁醇的发酵 | [ |
氧化铁纳米颗粒 | Bacillus subtilis natto | 吸附 | 甲萘醌-7 | 产率提高15%,颗粒的细菌捕获效率达到95% | [ |
陶瓷 | Klebsiella pneumoniae | 吸附 | 1,3-丙二醇 | 产率提高200%,细胞抗极端条件下有较高的耐受性 | [ |
介孔氧化硅 | L. rhamnosus | 吸附 | 乳酸 | 葡萄糖转化率达92.4% | [ |
表3 利用无机材料固定细胞进行生物发酵
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
活性炭 | C. acetobutylicum | 吸附 | 氢和丁醇 | 生物膜的形成强化了氢气和丁醇的发酵 | [ |
氧化铁纳米颗粒 | Bacillus subtilis natto | 吸附 | 甲萘醌-7 | 产率提高15%,颗粒的细菌捕获效率达到95% | [ |
陶瓷 | Klebsiella pneumoniae | 吸附 | 1,3-丙二醇 | 产率提高200%,细胞抗极端条件下有较高的耐受性 | [ |
介孔氧化硅 | L. rhamnosus | 吸附 | 乳酸 | 葡萄糖转化率达92.4% | [ |
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚乙烯醇/海藻酸钙珠 | L. rhamnosus | 包埋 | 乳酸 | 乳酸最高生产强度为0.8g·L-1·h-1 | [ |
纤维素/海藻酸钙/聚乳酸 | L. bulgaricus | 吸附/包埋 | 乳酸 | 在同一生物反应器发酵中避免抑制问题 | [ |
二氧化硅/海藻酸钙 | Oenococcus oeni | 包埋 | 苹果酸 | 有效地避免产物抑制 | [ |
聚乙烯醇/海藻酸钙 | L. pentosus | 包埋 | 乳酸 | 15次分批重复发酵中保持稳定高效的性能 | [ |
表4 利用复合材料固定细胞进行生物发酵
材料 | 菌株 | 固定化方法 | 产物 | 结果 | 参考文献 |
---|---|---|---|---|---|
聚乙烯醇/海藻酸钙珠 | L. rhamnosus | 包埋 | 乳酸 | 乳酸最高生产强度为0.8g·L-1·h-1 | [ |
纤维素/海藻酸钙/聚乳酸 | L. bulgaricus | 吸附/包埋 | 乳酸 | 在同一生物反应器发酵中避免抑制问题 | [ |
二氧化硅/海藻酸钙 | Oenococcus oeni | 包埋 | 苹果酸 | 有效地避免产物抑制 | [ |
聚乙烯醇/海藻酸钙 | L. pentosus | 包埋 | 乳酸 | 15次分批重复发酵中保持稳定高效的性能 | [ |
1 | 吴天飞, 潘建洪, 方从申, 等. 固定化细胞技术应用进展[J]. 浙江化工, 2020, 51(3): 10-13. |
WU Tianfei, PAN Jianhong, FANG Congshen, et al. Application progress of immobilized cells technology[J]. Zhejiang Chemical Industry, 2020, 51(3): 10-13. | |
2 | DÍEZ-ANTOLÍNEZ R, HIJOSA-VALSERO M, PANIAGUA-GARCÍA A I, et al. Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads[J]. PLoS One, 2018, 13(12): e0210002. |
3 | 李俊, 宗红, 诸葛斌, 等. Acetobacter sp.驯化选育及固定化生产3-羟基丙酸[J]. 食品与发酵工业, 2016, 42(9): 40-44. |
LI Jun, ZONG Hong, ZHUGE Bin, et al. Domestication and immobilization of Acetobacter sp. for 3-hydroxypropionic acid bioproduction[J]. Food and Fermentation Industries, 2016, 42(9): 40-44. | |
4 | 杨涛, 李恒, 龚劲松, 等. 固定化Gibberella intermedia转化3-氰基吡啶制备烟酸[J]. 化工进展, 2014, 33(9): 2432-2437. |
YANG Tao, LI Heng, GONG Jinsong, et al. Biotransformation of 3-cyanopyridine for producing nicotinic acid by immobilized Gibberella intermedia[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2432-2437. | |
5 | 汪茂, 王雪, 刘峰, 等. 径迹纳米孔高分子膜的制备和表征[J]. 原子能科学技术, 2019, 53(10): 2120-2128. |
WANG Mao, WANG Xue, LIU Feng, et al. Fabrication and characterization of nanoporous polymer track membrane[J]. Atomic Energy Science and Technology, 2019, 53(10): 2120-2128. | |
6 | XU L, TSCHIRNER U. Immobilized anaerobic fermentation for bio-fuel production by Clostridiumco-culture[J]. Bioprocess and Biosystems Engineering, 2014, 37(8): 1551-1559. |
7 | PANESAR P S, KENNEDY J F, KNILL C J, et al. Applicability of pectate-entrapped Lactobacillus casei cells for L(+) lactic acid production from whey[J]. Applied Microbiology and Biotechnology, 2007, 74(1): 35-42. |
8 | YANG Z Y. Immobilization of Enterococcus faecalis cells with chitosan: a new process for the industrial production of l-citrulline[J]. Process Biochemistry, 2015, 50(7): 1056-1060. |
9 | YANG J M, YANG J H, TSOU S C, et al. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber[J]. Materials Science and Engineering C, 2016, 66: 170-177. |
10 | ZHANG W, BAI A, CHEN X, et al. Ethanol production from lignocelluloses hydrolyzates with immobilized multi-microorganisms[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2012, 34(13): 1206-1212. |
11 | 吴亚杰, 李辉军, 戴昕, 等. 无机材料对固定化微生物凝胶球性能的影响[J]. 环境工程学报, 2014, 8(8): 3289-3293. |
WU Yajie, LI Huijun, DAI Xin, et al. Effect of inorganic materials on properties of immobilized microorganism gel beads[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3289-3293. | |
12 | 江枫, 房伶晏, 王浩, 等. 固定化混合菌利用戊糖和己糖共发酵制备乙醇[J]. 林业工程学报, 2017, 2(4): 90-95. |
JIANG Feng, FANG Lingyan, WANG Hao, et al. Co-fermentation of pentose and hexose to ethanol by immobilized mixed yeasts method[J]. Journal of Forestry Engineering, 2017, 2(4): 90-95. | |
13 | 徐阳, 陈中, 刘秉杰. 海藻酸钙固定化鼠李糖乳杆菌LR-D的条件优化[J]. 食品科技, 2019, 44(11): 1-8. |
XU Yang, CHEN Zhong, LIU Bingjie. Optimization of conditions for immobilization of Lactobacillus rhamnosus LR-D with calcium alginate[J]. Food Science and Technology, 2019, 44(11): 1-8. | |
14 | BELGRANO F D S, DIEGEL O, PEREIRA N, et al. Cell immobilization on 3D-printed matrices: a model study on propionic acid fermentation[J]. Bioresource Technology, 2018, 249: 777-782. |
15 | JOHNSTON T G, YUAN S F, WAGNER J M, et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation[J]. Nature Communications, 2020, 11: 563. |
16 | SAHA A, JOHNSTON T G, SHAFRANEK R T, et al. Additive manufacturing of catalytically active living materials[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13373-13380. |
17 | DOLEJŠ I, KRASŇAN V, STLOUKAL R, et al. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation[J]. Bioresource Technology, 2014, 169: 723-730. |
18 | PETROV K K, PETROVA P M, BESCHKOV V N. Improved immobilization of Lactobacillus rhamnosus ATCC 7469 in polyacrylamide gel, preventing cell leakage during lactic acid fermentation[J]. World Journal of Microbiology and Biotechnology, 2007, 23(3): 423-428. |
19 | CHEN C C, LAN C C, PAN C L, et al. Repeated-batch lactic acid fermentation using a novel bacterial immobilization technique based on a microtube array membrane[J]. Process Biochemistry, 2019, 87: 25-32. |
20 | DOLEJŠ I, LÍŠKOVÁ M, KRASŇAN V, et al. Production of 1,3-propanediol from pure and crude glycerol using immobilized clostridium butyricum[J]. Catalysts, 2019, 9(4): 317. |
21 | NURHAYATI, CHENG C L, NAGARAJAN D, et al. Immobilization of Zymomonas mobilis with Fe2O3-modified polyvinyl alcohol for continuous ethanol fermentation[J]. Biochemical Engineering Journal, 2016, 114: 298-306. |
22 | PETROV K K, YANKOV D S, BESCHKOV V N. Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilizedin polyacrylamide gel[J]. World Journal of Microbiology and Biotechnology, 2006, 22(4): 337-345. |
23 | GOKFILIZ P, KARAPINAR I. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2553-2561. |
24 | XIAO H, GU Y, NING Y, et al. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose[J]. Applied and Environmental Microbiology, 2011, 77(22): 7886-7895. |
25 | KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2012, 118: 158-162. |
26 | LU J H, CHEN C, HUANG C, et al. Dark fermentation production of volatile fatty acids from glucose with biochar amended biological consortium[J]. Bioresource Technology, 2020, 303: 122921. |
27 | WU J W, DONG L L, ZHOU C S, et al. Enhanced butanol-hydrogen coproduction by Clostridium beijerinckii with biochar as cell’s carrier[J]. Bioresource Technology, 2019, 294: 122141. |
28 | LU J H, CHEN C, HUANG C, et al. Glucose fermentation with biochar amended consortium: sequential fermentations[J]. Bioresource Technology, 2020, 303: 122933. |
29 | LIU J Y, ZHOU W C, FAN S Q, et al. Coproduction of hydrogen and butanol by Clostridium acetobutylicum with the biofilm immobilized on porous particulate carriers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11617-11624. |
30 | EBRAHIMINEZHAD A, VARMA V, YANG S Y, et al. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 173-180. |
31 | GUNGORMUSLER M, GONEN C, AZBAR N. Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumoniae[J]. Journal of Applied Microbiology, 2011, 111(5): 1138-1147. |
32 | ZHAO Z J, XIE X N, WANG Z, et al. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production[J]. Journal of Bioscience and Bioengineering, 2016, 121(6): 645-651. |
33 | DING S L, FANG D X, PANG Z S, et al. Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal[J]. Science of the Total Environment, 2018, 645: 937-945. |
34 | RADOSAVLJEVIĆ M, LEVIĆ S, BELOVIĆ M, et al. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid[J]. Bioprocess and Biosystems Engineering, 2020, 43(2): 315-322. |
35 | KUMAR M N, GIALLELI A I, MASSON J B, et al. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites[J]. Bioresource Technology, 2014, 165: 332-335. |
36 | SIMÓ G, FERNÁNDEZ-FERNÁNDEZ E, VILA-CRESPO J, et al. Malolactic fermentation induced by silica-alginate encapsulated Oenococcus oeni with different inoculation regimes[J]. Australian Journal of Grape and Wine Research, 2019, 25(2): 165-172. |
37 | WANG J F, HUANG J Q, GUO H Y, et al. Optimization of immobilization conditions for Lactobacillus pentosus cells[J]. Bioprocess and Biosystems Engineering, 2020, 43(6): 1071-1079. |
38 | PRAVEEN P, LOH K C. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10345-10354. |
39 | NGUYEN D T T, PRAVEEN P, LOH K C. Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation[J]. Biochemical Engineering Journal, 2018, 140: 29-37. |
40 | NGUYEN D T T, PRAVEEN P, LOH K C. Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol[J]. Biochemical Engineering Journal, 2019, 145: 145-152. |
41 | KIM H, JEON B S, PANDEY A, et al. New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production[J]. Bioresource Technology, 2018, 270: 498-503. |
42 | CHEN P C, ZHENG P, YE X Y, et al. Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid[J]. Enzyme and Microbial Technology, 2017, 98: 34-42. |
43 | ROMO-URIBE A, MENESES-ACOSTA A, DOMÍNGUEZ-DÍAZ M. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 81: 236-246. |
44 | STEVENS M M, GEORGE J H. Exploring and engineering the cell surface interface[J]. Science, 2005, 310(5751): 1135-1138. |
45 | HU M X, LI J N, GUO Q, et al. Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production[J]. Journal of Agricultural and Food Chemistry, 2019, 67(11): 3198-3208. |
46 | SHAHAB R L, LUTERBACHER J S, BRETHAUER S, et al. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium[J]. Biotechnology and Bioengineering, 2018, 115(5): 1207-1215. |
[1] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[2] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[3] | 鲁少杰, 刘佳, 冀芊竹, 李萍, 韩月阳, 陶敏, 梁文俊. 硅藻土基复合填料制备及滴滤塔去除二甲苯的性能[J]. 化工进展, 2023, 42(7): 3884-3892. |
[4] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[5] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
[6] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[7] | 黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
[8] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
[9] | 王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372. |
[10] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
[11] | 李婉麒, 杨凤娟, 贾德臣, 姜卫红, 顾阳. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
[12] | 孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
[13] | 许亚兵, 王宝山, 汪光宗, 张洋. 生物电化学系统对制药废水中难生化有机物的降解[J]. 化工进展, 2022, 41(9): 5055-5064. |
[14] | 唐婷, 周文凤, 王志, 朱晨杰, 许敬亮, 庄伟, 应汉杰, 欧阳平凯. 多酶共固定化技术在糖类催化中的研究进展[J]. 化工进展, 2022, 41(5): 2636-2648. |
[15] | 刘洋, 叶小梅, 王成成, 贾昭炎, 杜静, 孔祥平, 奚永兰. 农村有机生活垃圾与不同原料厌氧共发酵工艺优化[J]. 化工进展, 2022, 41(5): 2770-2777. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |