1 |
吴天飞, 潘建洪, 方从申, 等. 固定化细胞技术应用进展[J]. 浙江化工, 2020, 51(3): 10-13.
|
|
WU Tianfei, PAN Jianhong, FANG Congshen, et al. Application progress of immobilized cells technology[J]. Zhejiang Chemical Industry, 2020, 51(3): 10-13.
|
2 |
DÍEZ-ANTOLÍNEZ R, HIJOSA-VALSERO M, PANIAGUA-GARCÍA A I, et al. Yeast screening and cell immobilization on inert supports for ethanol production from cheese whey permeate with high lactose loads[J]. PLoS One, 2018, 13(12): e0210002.
|
3 |
李俊, 宗红, 诸葛斌, 等. Acetobacter sp.驯化选育及固定化生产3-羟基丙酸[J]. 食品与发酵工业, 2016, 42(9): 40-44.
|
|
LI Jun, ZONG Hong, ZHUGE Bin, et al. Domestication and immobilization of Acetobacter sp. for 3-hydroxypropionic acid bioproduction[J]. Food and Fermentation Industries, 2016, 42(9): 40-44.
|
4 |
杨涛, 李恒, 龚劲松, 等. 固定化Gibberella intermedia转化3-氰基吡啶制备烟酸[J]. 化工进展, 2014, 33(9): 2432-2437.
|
|
YANG Tao, LI Heng, GONG Jinsong, et al. Biotransformation of 3-cyanopyridine for producing nicotinic acid by immobilized Gibberella intermedia[J]. Chemical Industry and Engineering Progress, 2014, 33(9): 2432-2437.
|
5 |
汪茂, 王雪, 刘峰, 等. 径迹纳米孔高分子膜的制备和表征[J]. 原子能科学技术, 2019, 53(10): 2120-2128.
|
|
WANG Mao, WANG Xue, LIU Feng, et al. Fabrication and characterization of nanoporous polymer track membrane[J]. Atomic Energy Science and Technology, 2019, 53(10): 2120-2128.
|
6 |
XU L, TSCHIRNER U. Immobilized anaerobic fermentation for bio-fuel production by Clostridiumco-culture[J]. Bioprocess and Biosystems Engineering, 2014, 37(8): 1551-1559.
|
7 |
PANESAR P S, KENNEDY J F, KNILL C J, et al. Applicability of pectate-entrapped Lactobacillus casei cells for L(+) lactic acid production from whey[J]. Applied Microbiology and Biotechnology, 2007, 74(1): 35-42.
|
8 |
YANG Z Y. Immobilization of Enterococcus faecalis cells with chitosan: a new process for the industrial production of l-citrulline[J]. Process Biochemistry, 2015, 50(7): 1056-1060.
|
9 |
YANG J M, YANG J H, TSOU S C, et al. Cell proliferation on PVA/sodium alginate and PVA/poly(γ-glutamic acid) electrospun fiber[J]. Materials Science and Engineering C, 2016, 66: 170-177.
|
10 |
ZHANG W, BAI A, CHEN X, et al. Ethanol production from lignocelluloses hydrolyzates with immobilized multi-microorganisms[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2012, 34(13): 1206-1212.
|
11 |
吴亚杰, 李辉军, 戴昕, 等. 无机材料对固定化微生物凝胶球性能的影响[J]. 环境工程学报, 2014, 8(8): 3289-3293.
|
|
WU Yajie, LI Huijun, DAI Xin, et al. Effect of inorganic materials on properties of immobilized microorganism gel beads[J]. Chinese Journal of Environmental Engineering, 2014, 8(8): 3289-3293.
|
12 |
江枫, 房伶晏, 王浩, 等. 固定化混合菌利用戊糖和己糖共发酵制备乙醇[J]. 林业工程学报, 2017, 2(4): 90-95.
|
|
JIANG Feng, FANG Lingyan, WANG Hao, et al. Co-fermentation of pentose and hexose to ethanol by immobilized mixed yeasts method[J]. Journal of Forestry Engineering, 2017, 2(4): 90-95.
|
13 |
徐阳, 陈中, 刘秉杰. 海藻酸钙固定化鼠李糖乳杆菌LR-D的条件优化[J]. 食品科技, 2019, 44(11): 1-8.
|
|
XU Yang, CHEN Zhong, LIU Bingjie. Optimization of conditions for immobilization of Lactobacillus rhamnosus LR-D with calcium alginate[J]. Food Science and Technology, 2019, 44(11): 1-8.
|
14 |
BELGRANO F D S, DIEGEL O, PEREIRA N, et al. Cell immobilization on 3D-printed matrices: a model study on propionic acid fermentation[J]. Bioresource Technology, 2018, 249: 777-782.
|
15 |
JOHNSTON T G, YUAN S F, WAGNER J M, et al. Compartmentalized microbes and co-cultures in hydrogels for on-demand bioproduction and preservation[J]. Nature Communications, 2020, 11: 563.
|
16 |
SAHA A, JOHNSTON T G, SHAFRANEK R T, et al. Additive manufacturing of catalytically active living materials[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 13373-13380.
|
17 |
DOLEJŠ I, KRASŇAN V, STLOUKAL R, et al. Butanol production by immobilised Clostridium acetobutylicum in repeated batch, fed-batch, and continuous modes of fermentation[J]. Bioresource Technology, 2014, 169: 723-730.
|
18 |
PETROV K K, PETROVA P M, BESCHKOV V N. Improved immobilization of Lactobacillus rhamnosus ATCC 7469 in polyacrylamide gel, preventing cell leakage during lactic acid fermentation[J]. World Journal of Microbiology and Biotechnology, 2007, 23(3): 423-428.
|
19 |
CHEN C C, LAN C C, PAN C L, et al. Repeated-batch lactic acid fermentation using a novel bacterial immobilization technique based on a microtube array membrane[J]. Process Biochemistry, 2019, 87: 25-32.
|
20 |
DOLEJŠ I, LÍŠKOVÁ M, KRASŇAN V, et al. Production of 1,3-propanediol from pure and crude glycerol using immobilized clostridium butyricum[J]. Catalysts, 2019, 9(4): 317.
|
21 |
NURHAYATI, CHENG C L, NAGARAJAN D, et al. Immobilization of Zymomonas mobilis with Fe2O3-modified polyvinyl alcohol for continuous ethanol fermentation[J]. Biochemical Engineering Journal, 2016, 114: 298-306.
|
22 |
PETROV K K, YANKOV D S, BESCHKOV V N. Lactic acid fermentation by cells of Lactobacillus rhamnosus immobilizedin polyacrylamide gel[J]. World Journal of Microbiology and Biotechnology, 2006, 22(4): 337-345.
|
23 |
GOKFILIZ P, KARAPINAR I. The effect of support particle type on thermophilic hydrogen production by immobilized batch dark fermentation[J]. International Journal of Hydrogen Energy, 2017, 42(4): 2553-2561.
|
24 |
XIAO H, GU Y, NING Y, et al. Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient Clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose[J]. Applied and Environmental Microbiology, 2011, 77(22): 7886-7895.
|
25 |
KIM K H, KIM J Y, CHO T S, et al. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida)[J]. Bioresource Technology, 2012, 118: 158-162.
|
26 |
LU J H, CHEN C, HUANG C, et al. Dark fermentation production of volatile fatty acids from glucose with biochar amended biological consortium[J]. Bioresource Technology, 2020, 303: 122921.
|
27 |
WU J W, DONG L L, ZHOU C S, et al. Enhanced butanol-hydrogen coproduction by Clostridium beijerinckii with biochar as cell’s carrier[J]. Bioresource Technology, 2019, 294: 122141.
|
28 |
LU J H, CHEN C, HUANG C, et al. Glucose fermentation with biochar amended consortium: sequential fermentations[J]. Bioresource Technology, 2020, 303: 122933.
|
29 |
LIU J Y, ZHOU W C, FAN S Q, et al. Coproduction of hydrogen and butanol by Clostridium acetobutylicum with the biofilm immobilized on porous particulate carriers[J]. International Journal of Hydrogen Energy, 2019, 44(23): 11617-11624.
|
30 |
EBRAHIMINEZHAD A, VARMA V, YANG S Y, et al. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 173-180.
|
31 |
GUNGORMUSLER M, GONEN C, AZBAR N. Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumoniae[J]. Journal of Applied Microbiology, 2011, 111(5): 1138-1147.
|
32 |
ZHAO Z J, XIE X N, WANG Z, et al. Immobilization of Lactobacillus rhamnosus in mesoporous silica-based material: an efficiency continuous cell-recycle fermentation system for lactic acid production[J]. Journal of Bioscience and Bioengineering, 2016, 121(6): 645-651.
|
33 |
DING S L, FANG D X, PANG Z S, et al. Immobilization of powdery calcium silicate hydrate via PVA covalent cross-linking process for phosphorus removal[J]. Science of the Total Environment, 2018, 645: 937-945.
|
34 |
RADOSAVLJEVIĆ M, LEVIĆ S, BELOVIĆ M, et al. Immobilization of Lactobacillus rhamnosus in polyvinyl alcohol/calcium alginate matrix for production of lactic acid[J]. Bioprocess and Biosystems Engineering, 2020, 43(2): 315-322.
|
35 |
KUMAR M N, GIALLELI A I, MASSON J B, et al. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites[J]. Bioresource Technology, 2014, 165: 332-335.
|
36 |
SIMÓ G, FERNÁNDEZ-FERNÁNDEZ E, VILA-CRESPO J, et al. Malolactic fermentation induced by silica-alginate encapsulated Oenococcus oeni with different inoculation regimes[J]. Australian Journal of Grape and Wine Research, 2019, 25(2): 165-172.
|
37 |
WANG J F, HUANG J Q, GUO H Y, et al. Optimization of immobilization conditions for Lactobacillus pentosus cells[J]. Bioprocess and Biosystems Engineering, 2020, 43(6): 1071-1079.
|
38 |
PRAVEEN P, LOH K C. Photosynthetic aeration in biological wastewater treatment using immobilized microalgae-bacteria symbiosis[J]. Applied Microbiology and Biotechnology, 2015, 99(23): 10345-10354.
|
39 |
NGUYEN D T T, PRAVEEN P, LOH K C. Zymomonas mobilis immobilization in polymeric membranes for improved resistance to lignocellulose-derived inhibitors in bioethanol fermentation[J]. Biochemical Engineering Journal, 2018, 140: 29-37.
|
40 |
NGUYEN D T T, PRAVEEN P, LOH K C. Co-culture of Zymomonas mobilis and Scheffersomyces stipitis immobilized in polymeric membranes for fermentation of glucose and xylose to ethanol[J]. Biochemical Engineering Journal, 2019, 145: 145-152.
|
41 |
KIM H, JEON B S, PANDEY A, et al. New coculture system of Clostridium spp. and Megasphaera hexanoica using submerged hollow-fiber membrane bioreactors for caproic acid production[J]. Bioresource Technology, 2018, 270: 498-503.
|
42 |
CHEN P C, ZHENG P, YE X Y, et al. Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid[J]. Enzyme and Microbial Technology, 2017, 98: 34-42.
|
43 |
ROMO-URIBE A, MENESES-ACOSTA A, DOMÍNGUEZ-DÍAZ M. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds[J]. Materials Science & Engineering C: Materials for Biological Applications, 2017, 81: 236-246.
|
44 |
STEVENS M M, GEORGE J H. Exploring and engineering the cell surface interface[J]. Science, 2005, 310(5751): 1135-1138.
|
45 |
HU M X, LI J N, GUO Q, et al. Probiotics biofilm-integrated electrospun nanofiber membranes: a new starter culture for fermented milk production[J]. Journal of Agricultural and Food Chemistry, 2019, 67(11): 3198-3208.
|
46 |
SHAHAB R L, LUTERBACHER J S, BRETHAUER S, et al. Consolidated bioprocessing of lignocellulosic biomass to lactic acid by a synthetic fungal-bacterial consortium[J]. Biotechnology and Bioengineering, 2018, 115(5): 1207-1215.
|