化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3314-3329.DOI: 10.16085/j.issn.1000-6613.2020-1330
李祥业1(), 白天娇1, 翁昕1, 张冰1, 王珍珍1, 何铁石1,2()
收稿日期:
2020-07-13
修回日期:
2020-08-21
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
何铁石
作者简介:
李祥业(1992—),男,硕士研究生,研究方向为电化学功能材料、超级电容器等。E-mail:基金资助:
LI Xiangye1(), BAI Tianjiao1, WENG Xin1, ZHANG Bing1, WANG Zhenzhen1, HE Tieshi1,2()
Received:
2020-07-13
Revised:
2020-08-21
Online:
2021-06-06
Published:
2021-06-22
Contact:
HE Tieshi
摘要:
静电纺丝法制备聚丙烯腈(PAN)基纳米纤维具有较大的比表面积、较高的机械强度、优异的纳米结构及良好的化学稳定性。以PAN纳米纤维为基础,进行多方位设计与合成的电极材料在超级电容器中表现出优异的电化学性能,具有广阔的应用前景。本文根据电极材料分类,主要综述了近年来PAN基多孔结构电极材料、杂原子掺杂电极材料以及与碳系材料、导电聚合物、金属氧化物复合等电极材料的研究进展;讨论了电极材料的结构特征、制备方法及其提高电化学性能的原理;最后指出了上述研究中存在的问题,并对未来PAN基电极材料在超级电容器的发展前景进行了展望。
中图分类号:
李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329.
LI Xiangye, BAI Tianjiao, WENG Xin, ZHANG Bing, WANG Zhenzhen, HE Tieshi. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329.
1 | SHEN L E, YU L, YU X Y, et al. Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors[J]. Angewandte Chemie: International Edition, 2015, 54(6): 1868-1872. |
2 | DING J, WANG H L, LI Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors[J]. Energy & Environmental Science, 2015, 8(3):941-955. |
3 | 杨乐, 余金河, 付蓉, 等. 超级电容器用solvent-in-salt型电解液的研究进展[J]. 化工学报, 2020, 71 (6): 2457-2465. |
YANG Le, YU Jinhe, FU Rong, et al. Research progress of solvent-in-salt electrolyte for supercapacitor[J]. CIESC Journal, 2020, 71 (6): 2457-2465. | |
4 | LI L, ZHANG M Y, ZHANG X J, et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 364: 234-241. |
5 | ZHANG S, ZHU J, QING Y, et al. Ultramicroporous carbons puzzled by graphene quantum dots: integrated high gravimetric, volumetric, and areal capacitances for supercapacitors[J]. Advanced Functional Materials, 2018, 28(52): 1805898. |
6 | YAN J, WANG Q, WEI T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials, 2014, 4(4): 1300816. |
7 | XIONG G P, MENG C Z, REIFENBERGER R G, et al. A review of graphene-based electrochemical microsupercapacitors[J]. Electroanalysis, 2014, 26(1): 30-51. |
8 | SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 2016, 1(6): 1-10. |
9 | HE G, SONG Y, CHEN S, et al. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials[J]. Journal of Materials Science, 2018, 53(13): 9721-9730. |
10 | AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage[J]. Energy & Environmental Science, 2014, 7(5): 1597-1614. |
11 | IKE I S, SIGALAS I, IYUKE S. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review[J]. Physical Chemistry Chemical Physics, 2016, 18(2): 661-680. |
12 | MAJUMDAR D, MANDAL M, BHATTACHARYA S K. V2O5 and its carbon-based nanocomposites for supercapacitor applications[J]. Chemelectrochem, 2019, 6(6): 1623-1648. |
13 | CHEN Z X, LU H B. Overview of graphene/polyaniline composite for high-performance supercapacitor[J]. Chemical Journal of Chinese Universities, 2013, 34(9): 2020-2033. |
14 | WU N S, LOW J, LIU T, et al. Hierarchical hollow cages of Mn-Co layered double hydroxide as supercapacitor electrode materials[J]. Applied Surface Science, 2017, 413: 35-40. |
15 | LI Y H, CAO L J, QIAO L, et al. Ni Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(18): 6540-6548. |
16 | LIN L Y, NING H M, SONG S F, et al. Flexible electrochemical energy storage: the role of composite materials[J]. Composites Science and Technology, 2020, 192(19): 108102. |
17 | YANG H Q, KOU S Q. Recent advances of flexible electrospun nanofibers-based electrodes for electrochemical supercapacitors: a minireview[J]. International Journal of Electrochemical Science, 2019, 14(8): 7811-7831. |
18 | NIE G D, ZHU Y, TIAN D, et al. Research progress in the electrospun nanofiber. based supercapacitor electrode materials[J]. Chemical Journal of Chinese Universities, 2018, 39(7): 1349-1363. |
19 | GUPTA R, KUMAR R, SHARMA A, et al. Novel Cu-carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells[J]. International Journal of Energy Research, 2015, 39(5): 668-680. |
20 | MOHAMED ISMAIL M, HEMAANANDHAN S, MANI D, et al. Facile preparation of Mn3O4/rGO hybrid nanocomposite by sol-gel in situ reduction method with enhanced energy storage performance for supercapacitor applications[J]. Journal of Sol-Gel Science and Technology, 2020, 93(3): 703-713. |
21 | GAN Y, WANG C, CHEN X, et al. High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices[J]. Chemical Engineering Journal, 2020, 392: 123661. |
22 | TIAN D, LU X F, NIE G D, et al. Direct growth of Ni-Mn-O nanosheets on flexible electrospun carbon nanofibers for high performance supercapacitor applications[J]. Inorganic Chemistry Frontiers, 2018, 5(3): 635-642. |
23 | TIAN D, LU X F, NIE G D, et al. Growth of polyaniline thorns on hybrid electrospun CNFs with nickel nanoparticles and graphene nanosheets as binder-free electrodes for high-performance supercapacitors[J]. Applied Surface Science, 2018, 458: 389-396. |
24 | LU X F, WANG C, FAVIER F, et al. Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance[J]. Advanced Energy Materials, 2017, 7(2): 1601301. |
25 | PATIL J V, MALI S S, KAMBLE A S, et al. Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach[J]. Applied Surface Science, 2017, 423: 641-674. |
26 | YANG K S, KIM B H. Electrospun metal oxide/carbon nanofiber composite electrode for supercapacitor application[J]. Applied Chemistry for Engineering, 2015, 26(3): 239-246. |
27 | WU Y Z, BOBBA C, RAMAKRISHNA S. Research and application of carbon nanofiber and nanocomposites via electrospinning technique in energy conversion systems[J]. Current Organic Chemistry, 2013, 17(13): 1411-1423. |
28 | WANG X, ZHANG W, CHEN M Z, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12): 1306. |
29 | HE G H, SONG Y H, CHEN S L, et al. Porous carbon nanofiber mats from electrospun polyacrylonitrile/polymethylmethacrylate composite nanofibers for supercapacitor electrode materials[J]. Journal of Materials Science, 2018, 53(13): 9721-9730. |
30 | ZUSSMAN E, CHEN X, DING W, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers[J]. Carbon, 2005, 43(10): 2175-2185. |
31 | YAN J H, DONG K Q, ZHANG Y Y, et al. Multifunctional flexible membranes from sponge-like porous carbon nanofibers with high conductivity[J]. Nature Communications, 2019,10: 5584-5593. |
32 | ABOAGYE A, LIU Y Y, RYAN J G, et al. Hierarchical carbon composite nanofibrous electrode material for high-performance aqueous supercapacitors[J]. Materials Chemistry and Physics, 2018, 214: 557-563. |
33 | TAN Y T, LIN D S, LIU C, et al. Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: effect of thermal treatment temperature[J]. Journal of Materials Research, 2018, 33(9): 1120-1130. |
34 | TIAN D, LU X F, LI W M, et al. Research on electrospun nanofiber-based binder-free electrode materials for supercapacitors[J]. Acta Physico: Chimica Sinica, 2020, 36(2): 1904056. |
35 | PANI T K, SAHOO B B, SUNDARAY B. Carbon electrodes derived from polyacrylonitrile-polyethylene glycol blend for high-performance supercapcitor[J]. Materials Research Express, 2019, 6(12): 125077. |
36 | SHILPA S, SHARMA A. Free standing hollow carbon nanofiber mats for supercapacitor electrodes[J]. RSC Advances, 2016, 6(82): 78528-78537. |
37 | MA C, CHEN J N, FAN Q C, et al. Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode[J]. Journal of Materials Science, 2018, 53(6): 4527-4539., |
38 | HE T S, YU X D, BAI T J, et al. Porous carbon nanofibers derived from PAA-PVP electrospun fibers for supercapacitor[J]. Ionics, 2020, 26(8): 4103-4111. |
39 | HE T S, FU Y R, MENG X L, et al. A novel strategy for the high performance supercapacitor based on polyacrylonitrile-derived porous nanofibers as electrode and separator in ionic liquid electrolyte[J]. Electrochimica Acta, 2018, 282: 97-104. |
40 | HE T S, SU Q Y, YILDIZ Z, et al. Ultrafine carbon fibers with hollow-porous multilayered structure for supercapacitors[J]. Electrochimica Acta, 2016, 222: 1120-1127. |
41 | AN G H, KOO B R, AHN H J. Activated mesoporous carbon nanofibers fabricated using water etching-assisted templating for high-performance electrochemical capacitors[J]. Physical Chemistry Chemical Physics, 2016, 18(9): 6587-6594. |
42 | ZAINAB G, BABAR A A, ALI N, et al. Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption[J]. Journal of Colloid and Interface Science, 2020, 561: 659-667. |
43 | ABEYKOON N C, BONSO J S, FERRARIS J P. Supercapacitor performance of carbon nanofiber electrodes derived from immiscible PAN/PMMA polymer blends[J]. RSC Advances, 2015, 5(26): 19865-19873. |
44 | JOH H I, SONG H K, LEE C H, et al. Preparation of porous carbon nanofibers derived from graphene oxide/polyacrylonitrile composites as electrochemical electrode materials[J]. Carbon, 2014, 70: 308-312. |
45 | GOPALAKRISHNAN A, SAHATIYA P, BADHULIKA S. Template-assisted electrospinning of bubbled carbon nanofibers as binder-free electrodes for high-performance supercapacitors[J]. Chemelectrochem, 2018, 5(3): 531-539 |
46 | FAN Q C, MA C, WU L Q, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances, 2019, 9(12): 6419-6428. |
47 | GOPALAKRISHNAN A, SAHATIYA P, BADHULIKA S. Template-assisted electrospinning of bubbled carbon nanofibers as binder-free electrodes for high-performance supercapacitors[J]. Chemelectrochem, 2018, 5(3): 531-539. |
48 | ZHOU D, DONG Y, CUI L R, et al. Synthesis of porous carbon/silica nanostructured microfiber with ultrahigh surface area[J]. Journal of Nanoparticle Research, 2014, 16(12): 1-9. |
49 | JIANG Q T, PANG X, GENG S T, et al. Simultaneous cross-linking and pore-forming electrospun carbon nanofibers towards high capacitive performance[J]. Applied Surface Science, 2019,479:128-136. |
50 | ZHANG L J, JIANG Y Z, WANG L W, et al. Hierarchical porous carbon nanofibers as binder-free electrode for high-performance supercapacitor[J]. Electrochimica Acta, 2016, 196: 189-196. |
51 | FAN L, YANG L, NI X Y, et al. Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors[J]. Carbon, 2016, 107: 629-637. |
52 | LI Z, ZHANG J W, YU L G, et al. Electrospun porous nanofibers for electrochemical energy storage[J]. Journal of Materials Science, 2017, 52(11): 6173-6195. |
53 | KIM C H, YANG C M, KIM Y A, et al. Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance[J]. Applied Surface Science, 2019, 497: 143693. |
54 | PERANANTHAN S, BONSO J S, FERRARIS J P. Supercapacitors utilizing electrodes derived from polyacrylonitrile fibers incorporating tetramethylammonium oxalate as a porogen[J]. Carbon, 2016, 106: 20-27. |
55 | ABEYKOON N C, GARCIA V, JAYAWICKRAMAGE R A, et al. Novel binder-free electrode materials for supercapacitors utilizing high surface area carbon nanofibers derived from immiscible polymer blends of PBI/6FDA-DAM: DABA[J]. RSC Advances, 2017, 7(34): 20947-20959. |
56 | KIM C, YANG K S. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning[J]. Applied Physics Letters, 2003, 83(6): 1216-1218. |
57 | MA C, WANG R R, XIE Z Y, et al. Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes[J]. Journal of Porous Materials, 2017, 24(6): 1437-1445. |
58 | MA C, LI Y J, SHI J L, et al. High-performance supercapacitor electrodes based on porous flexible carbon nanofiber paper treated by surface chemical etching[J]. Chemical Engineering Journal, 2014, 249: 216-225. |
59 | LIU Y W, LIU Q, WANG L, et al. Advanced supercapacitors based on porous hollow carbon nanofiber electrodes with high specific capacitance and large energy density[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4777-4786. |
60 | LI X, TIAN X D, YANG T, et al. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: an effective approach to coal waste management[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5742-5750. |
61 | LILLO-RÓDENAS M A, CAZORLA-AMORÓS D, LINARES-SOLANO A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism[J]. Carbon, 2003, 41(2): 267-275. |
62 | RAYMUNDO-PIÑERO E, AZAÍS P, CACCIAGUERRA T, et al. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organisation[J]. Carbon, 2005, 43(4): 786-795. |
63 | YOON S H, LIM S, SONG Y, et al. KOH activation of carbon nanofibers[J]. Carbon, 2004, 42(8): 1723-1729. |
64 | AZARGOHAR R, DALAI A K. Steam and KOH activation of biochar: experimental and modeling studies[J]. Microporous and Mesoporous Materials, 2008, 110(3): 413-421. |
65 | LI Q, JIN B S, HUANG Y J, et al. Preparation of biomass activated carbon by steam activation[J]. Journal of Southeast University, 2009, 39(5): 1008-1011. |
66 | SHI G F, LIU C, WANG G Y, et al. Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers[J]. Ionics, 2019, 25(4): 1805-1812. |
67 | HEO Y J, LEE H I, LEE J W, et al. Optimization of the pore structure of PAN-based carbon fibers for enhanced supercapacitor performances via electrospinning[J]. Composites Part B: Engineering, 2019, 161: 10-17. |
68 | QIAN W X, LI X, ZHU X Q, et al. Preparation of activated carbon nanofibers using degradative solvent extraction products obtained from low-rank coal and their utilization in supercapacitors[J]. RSC Advances, 2020, 10(14): 8172-8180. |
69 | PERERA JAYAWICKRAMAGE R A, BALKUS K J, FERRARIS J P. Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors[J]. Nanotechnology, 2019, 30(35): 9-18. |
70 | KIM C H, YANG C M, KIM Y A, et al. Pore engineering of nanoporous carbon nanofibers toward enhanced supercapacitor performance[J]. Applied Surface Science, 2019, 497: 143693. |
71 | YANG T T, LI R Y, LONG X H, et al. Nitrogen and sulphur-functionalized multiple graphene aerogel for supercapacitors with excellent electrochemical performance[J]. Electrochimica Acta, 2016, 187: 143-152. |
72 | LIU D, YU S, SHEN Y L, et al. Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials[J]. Industrial & Engineering Chemistry Research, 2015, 54(50): 12570-12579. |
73 | LI R C, HU Z X, SHAO X F, et al. Large scale synthesis of nico layered double hydroxides for superior asymmetric electrochemical capacitor[J]. Scientific Reports, 2016, 6: 18737-18745. |
74 | DOU S, HUANG X B, MA Z L, et al. A simple approach to the synthesis of BCN graphene with high capacitance[J]. Nanotechnology, 2015, 26(4): 045402. |
75 | LIU Y, ZHANG Z Y, FANG Y R, et al. Ir-driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane[J]. Applied Catalysis B: Environmental, 2019, 252: 164-173. |
76 | WANG C Q, QIU F L, DENG H, et al. Study on the aqueous hybrid supercapacitor based on carbon-coated NaTi2(PO4)3 and activated carbon electrode materials[J]. Acta Chimica Sinica, 2017, 75(2): 241-246. |
77 | LIN T Q, CHEN I W, LIU F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513. |
78 | WANG K, LI L W, ZHANG T Z, et al. Nitrogen-doped graphene for supercapacitor with long-term electrochemical stability[J]. Energy, 2014, 70: 612-617. |
79 | XIN G X, WANG Y H, JIA S P, et al. Synthesis of nitrogen-doped mesoporous carbon from polyaniline with an F127 template for high-performance supercapacitors[J]. Applied Surface Science, 2017, 422: 654-660. |
80 | MONDAL A K, KRETSCHMER K, ZHAO Y F, et al. Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors[J]. Microporous and Mesoporous Materials, 2017, 246: 72-80. |
81 | NA W, JUN J, PARK J W, et al. Highly porous carbon nanofibers Co-doped with fluorine and nitrogen for outstanding supercapacitor performance[J]. Journal of Materials Chemistry A, 2017, 5(33): 17379-17387. |
82 | CAI J, NIU H T, LI Z Y, et al. High-performance supercapacitor electrode materials from cellulose-derived carbon nanofibers[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14946-14953. |
83 | RAMAKRISHNAN P, SHANMUGAM S. Nitrogen-doped porous multi-nano-channel nanocarbons for use in high-performance supercapacitor applications[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(4): 2439-2448. |
84 | BIANCO G V, LOSURDO M, GIANGREGORIO M M, et al. Exploring and rationalising effective N-doping of large area CVD-graphene by NH3 [J]. Physical Chemistry Chemical Physics, 2014, 16(8): 3632-3639. |
85 | LI M, XUE J M. Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors[J]. The Journal of Physical Chemistry C, 2014, 118(5): 2507-2517. |
86 | GUO H L, SU P, KANG X F, et al. Synthesis and characterization of nitrogen-doped graphene hydrogels by hydrothermal route with urea as reducing-doping agents[J]. Journal of Materials Chemistry A, 2013, 1(6): 2248-2255. |
87 | HAN J P, XU G Y, DING B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(15): 5352-5357. |
88 | LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4): 2225-2229. |
89 | SHI Q, ZHANG R Y, LYU Y, et al. Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor[J]. Carbon, 2015, 84: 335-346. |
90 | JIANG Q, LIU M Z, SHAO C L, et al. Nitrogen doping polyvinylpyrrolidone-based carbon nanofibers via pyrolysis of g-C3N4 with tunable chemical states and capacitive energy storage[J]. Electrochimica Acta, 2020, 330: 135212. |
91 | YAN S H, TANG C G, ZHANG H, et al. Free-standing cross-linked activated carbon nanofibers with nitrogen functionality for high-performance supercapacitors[J]. Nanotechnology, 2020, 31(2): 025402. |
92 | LU J J, YING Z R, LIU X D, et al. Preparation of cross-linked porous carbon nanofiber networks by electrospinning method and their electrochemical capacitive behaviors[J]. Acta Physico: Chimica Sinica, 2015, 31(11): 2099-2108. |
93 | XU Q, YU X L, LIANG Q H, et al. Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry, 2015, 739: 84-88. |
94 | ZHAO L, QIU Y J, YU J, et al. Carbon nanofibers with radially grown graphene sheets derived from electrospinning for aqueous supercapacitors with high working voltage and energy density[J]. Nanoscale, 2013, 5(11): 4902-4909. |
95 | ZHANG L F, ABOAGYE A, KELKAR A, et al. A review: carbon nanofibers from electrospun polyacrylonitrile and their applications[J]. Journal of Materials Science, 2014, 49(2): 463-480. |
96 | NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers a state of the art review[J]. Progress in Polymer Science, 2012, 37(3): 487-513. |
97 | HOSSEINI S R, GHASEMI S, VAHDAT Y. The effect of electro-polymerization method on supercapacitive properties of poly(o-anisidine)/CNT nanocomposites[J]. Synthetic Metals, 2018, 246: 16-22. |
98 | YILMAZ M, HSU S H, RAINA S, et al. Integrated photocapacitors based on dye-sensitized TiO2/FTO as photoanode and MnO2 coated micro-array CNTs as supercapacitor counter electrode with TBABF4 electrolyte[J]. Journal of Renewable and Sustainable Energy, 2018, 10(6): 063503. |
99 | WANG X, ZHANG W, CHEN M, et al. Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance[J]. Polymers, 2018, 10(12): 1306-1320. |
100 | LAI C L, ZHOU Z P, ZHANG L F, et al. Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors[J]. Journal of Power Sources, 2014, 247: 134-141. |
101 | TIAN D, LU X, LI W, et al. Research on electrospun nanofiber-based binder-free electrode materials for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 1904056. |
102 | KIM S Y, YANG K, KIM B H. Enhanced electrical capacitance of heteroatom-decorated nanoporous carbon nanofiber composites containing graphene[J]. Electrochimica Acta, 2014, 137: 781-788. |
103 | DAI Z, REN P G, JAN Y L, et al. Nitrogen-sulphur Co-doped graphenes modified electrospun lignin/polyacrylonitrile-based carbon nanofiber as high performance supercapacitor[J]. Journal of Power Sources, 2019, 437: 226937. |
104 | SHI H H, JANG S, REZA-UGALDE A, et al. Hierarchically structured nitrogen-doped multilayer reduced graphene oxide for flexible intercalated supercapacitor electrodes[J]. ACS Applied Energy Materials, 2020, 3(1): 987-997. |
105 | ZHOU Z P, WU X F. Graphene-beaded carbon nanofibers for use in supercapacitor electrodes: synthesis and electrochemical characterization[J]. Journal of Power Sources, 2013, 222(15): 410-416. |
106 | ZHOU Z P, WU X F, FONG H. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors[J]. Applied Physics Letters, 2012, 100(2): 023115. |
[1] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[2] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[3] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[4] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
[5] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[6] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[7] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[8] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[9] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[10] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[11] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[12] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[13] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[14] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
[15] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |