化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3330-3345.DOI: 10.16085/j.issn.1000-6613.2020-1493
田杜1(), 刘奔1, 李奇1, 王朋2, 钟敏1, 胡成龙1, 陈韶云1(), 纪红兵3()
收稿日期:
2020-07-31
修回日期:
2020-09-21
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
陈韶云,纪红兵
作者简介:
田杜(1996—),男,硕士研究生,研究方向为导电聚合物的合成及其电化学性能。E-mail:基金资助:
TIAN Du1(), LIU Ben1, LI Qi1, WANG Peng2, ZHONG Min1, HU Chenglong1, CHEN Shaoyun1(), JI Hongbing3()
Received:
2020-07-31
Revised:
2020-09-21
Online:
2021-06-06
Published:
2021-06-22
Contact:
CHEN Shaoyun,JI Hongbing
摘要:
从聚苯胺(polyaniline, PANI)的结构特征和导电机理出发,详细叙述了一维有序PANI纳米阵列的优点及各种制备方法,指出了PANI纳米阵列作为超级电容器电极材料的优势。根据电极材料分类,重点综述了PANI阵列结构基与导电高分子材料、碳材料、金属氧化物复合作为超级电容器电极材料的应用情况;讨论了这些电极材料的结构特点、制备方法、提高电化学储能性的机理及上述研究中存在的问题;最后根据存在的问题,提出进一步优化PANI阵列结构基电极材料电化学性能的制备方法与策略,并对未来PANI阵列结构基电极材料在超级电容器的发展前景进行了展望。
中图分类号:
田杜, 刘奔, 李奇, 王朋, 钟敏, 胡成龙, 陈韶云, 纪红兵. 一维有序聚苯胺纳米阵列在超级电容器中的研究进展[J]. 化工进展, 2021, 40(6): 3330-3345.
TIAN Du, LIU Ben, LI Qi, WANG Peng, ZHONG Min, HU Chenglong, CHEN Shaoyun, JI Hongbing. Research progress of one-dimensional ordered polyaniline nanoarrays in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3330-3345.
1 | CHIANG C K, DRUY M A, GAU S C, et al. Synthesis of highly conducting films of derivatives of polyacetylene,(CH) x[J]. Journal of the American Chemical Society, 1978, 100(3): 1013-1015. |
2 | SHIRAKAWA H. The discovery of polyacetylene film: the dawning of an era of conducting polymers[J]. Current Applied Physics, 2001, 1(4/5): 281-286. |
3 | MACDIARMID A G. Synthetic metals: a novel role for organic polymers[J]. Synthetic Metals, 2001, 125(1): 11-22. |
4 | DIAZ A F, LOGAN J A. Electroactive polyaniline films[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1980, 111(1): 111-114. |
5 | KANAZAWA K K, DIAZ A F, GEISS R H, et al. ‘Organic metals’: polypyrrole, a stable synthetic ‘metallic’polymer[J]. Chemical Communications, 1979 (19): 854-855. |
6 | DIAZ A F, KANAZAWA K K, GARDINI G P. Electrochemical polymerization of pyrrole[J]. Chemical Communications, 1979 (14): 635-636. |
7 | ĆIRIĆ-MARJANOVIĆ G. Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications[J]. Synthetic Metals, 2013, 177: 1-47. |
8 | 王惠忠, 王荣顺, 赵成大, 等. 掺杂聚苯胺能带结构和导电机理的研究[J]. 高等学校化学学报, 1991, 12(9): 1229-1233. |
WANG H Z, WANG R S, ZHAO C D, et al. Studies on the electronic energy band structure and conducting mechanism for doped polyaniline[J]. Chemical Research in Chinese Universities, 1991 (9): 1229-1233. | |
9 | EFTEKHARI A, LI L, YANG Y. Polyaniline supercapacitors[J]. Journal of Power Sources, 2017, 347: 86-107. |
10 | FRACKOWIAK E, KHOMENKO V, JUREWICZ K, et al. Supercapacitors based on conducting polymers/nanotubes composites[J]. Journal of Power Sources, 2006, 153(2): 413-418. |
11 | SIMOTWO S K, KALRA V. Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries[J]. Current Opinion in Chemical Engineering, 2016, 13: 150-160. |
12 | HUANG C X, HAO C, ZHENG W H, et al. Synthesis of polyaniline/nickel oxide/sulfonated graphene ternary composite for all-solid-state asymmetric supercapacitor[J]. Applied Surface Science, 2020, 505: 144589. |
13 | FUSALBA F, GOUEREC P, VILLERS D, et al. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2011, 148(1): A1. |
14 | TAN Y T, RAN F, WANG L R, et al. Synthesis and electrochemical properties of hollow polyaniline microspheres by a sulfonated polystyrene template[J]. Journal of Applied Polymer Science, 2013, 127(3): 1544-1549. |
15 | MUJAWAR S H, AMBADE S B, BATTUMUR T, et al. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application[J]. Electrochimica Acta, 2011, 56(12): 4462-4466. |
16 | LIU X, ZHAO X H, YU Y Y, et al. Facile fabrication of conductive polyaniline nanoflower modified electrode and its application for microbial energy harvesting[J]. Electrochimica Acta, 2017, 255: 41-47. |
17 | RAZALI S A, MAJID S R. Fabrication of polyaniline nanorods on electro-etched carbon cloth and its electrochemical activities as electrode materials[J]. Ionics, 2019, 25(6): 2575-2584. |
18 | REN L J, ZHANG G N, WANG J F, et al. Adsorption–template preparation of polyanilines with different morphologies and their capacitance[J]. Electrochimica Acta, 2014, 145: 99-108. |
19 | CHEN S Y, LIU B, WANG Y, et al. Excellent electrochemical performances of intrinsic polyaniline nanofibers fabricated by electrochemical deposition[J]. Journal of Wuhan University of Technology (Mater. Sci. Ed.) 2019, 34(1): 216-222. |
20 | HU C L, CHEN S Y, WANG Y, et al. Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis[J]. Journal of Power Sources, 2016, 321: 94-101. |
21 | WANG Y, XU S Q, LIU W F, et al. Facile fabrication of urchin-like polyaniline microspheres for electrochemical energy storage[J]. Electrochimica Acta, 2017, 254: 25-35. |
22 | ZHANG X H, MENG X Y, WANG Q, et al. Preparation and electrochemical investigation of polyaniline nanowires for high performance supercapacitor[J]. Materials Letters, 2018, 217: 312-315. |
23 | PARK K H, KIM S J, GOMES R, et al. High performance dye-sensitized solar cell by using porous polyaniline nanotubes as counter electrode[J]. Chemical Engineering Journal, 2015, 260: 393-398. |
24 | WANG K, WU H, MENG Y, et al. Conducting polymer nanowire arrays for high performance supercapacitors[J]. Small, 2014, 10(1): 14-31. |
25 | MARTIN C R. Nanomaterials: a membrane-based synthetic approach[J]. Science, 1994, 266(5193): 1961-1966. |
26 | PAN L J, PU L, SHI Y, et al. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide[J]. Advanced Materials, 2007, 19(3): 461-464. |
27 | WANG Z L, GUO R, LI G R, et al. Polyaniline nanotube arrays as high-performance flexible electrodes for electrochemical energy storage devices[J]. Journal of Materials Chemistry, 2012, 22(6): 2401. |
28 | LI X J, WU Y C, HUA K, et al. Vertically aligned polyaniline nanowire arrays for lithium-ion battery[J]. Colloid and Polymer Science, 2018, 296(8): 1395-1400. |
29 | WU H, HIGAKI Y, TAKAHARA A. Molecular self-assembly of one-dimensional polymer nanostructures in nanopores of anodic alumina oxide templates[J]. Progress in Polymer Science, 2018, 77: 95-117. |
30 | CHEN Q, XIA Z, ZHANG Y, et al. Preparation oaf polyaniline/diazonium salt/TiO2 nanotube arrays as supercapacitor electrode by electrochemical grafting and deposition[J]. Journal of Solid State Electrochemistry, 2019, 23(12): 3399-3408. |
31 | XIONG S X, WANG Y Y, LU Y Z, et al. Enhancing the electrochromic performances of polyaniline film through incorporating polyaniline nanofibers synthesized by interfacial polymerization approach[J]. Polymer Bulletin, 2018, 75(8): 3427-3443. |
32 | ZHOU P, LI J, YANG W W, et al. Polyaniline nanofibers: their amphiphilicity and uses for Pickering emulsions and on-demand emulsion separation[J]. Langmuir, 2018, 34(8): 2841-2848. |
33 | LIU B, ZHANG X Y, Tian D. et al. In situ growth of oriented polyaniline nanorod arrays on the graphite flake for high-performance supercapacitors[J]. ACS Omega, 2020, 5: 32395-32402. |
34 | LI Y H, ZHOU B, ZHENG G Q, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C, 2018, 6(9): 2258-2269. |
35 | LIANG L, LIU J, WINDISCH Jr C F, et al. Direct assembly of large arrays of oriented conducting polymer nanowires[J]. Angewandte Chemie: International Edition, 2002, 41(19): 3665-3668. |
36 | WANG K, HUANG J Y, WEI Z X. Conducting polyaniline nanowire arrays for high performance supercapacitors[J]. The Journal of Physical Chemistry C, 2010, 114(17): 8062-8067. |
37 | 刘奔, 张行颖, 陈韶云,等. 一维有序聚苯胺纳米阵列的制备及电化学储能性能[J]. 高等学校化学学报, 2019, 40(3): 498-507. |
LIU B, ZHANG X Y, CHEN S Y, et al. Preparation and electrochemical energy storage performance of one dimensional orderly polyaniline nanowires array[J]. Chemical Journal of Chinese Universities, 2019, 40(3): 498-507. | |
38 | CHIOU N R, LU C, GUAN J, et al. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties[J]. Nature Nanotechnology, 2007, 2(6): 354-357. |
39 | WANG Y, XU S Q, CHENG H, et al. Oriented growth of polyaniline nanofiber arrays onto the glass and flexible substrates using a facile method[J]. Applied Surface Science, 2018, 428: 315-321. |
40 | PARK H J, YOON J H, LEE K G, et al. Potentiometric performance of flexible pH sensor based on polyaniline nanofiber arrays[J]. Nano Convergence, 2019, 6(1): 9. |
41 | GUAN C, LI X, WANG Z, et al. Nanoporous walls on macroporous foam: rational design of electrodes to push areal pseudocapacitance[J]. Advanced Materials, 2012, 24(30): 4186-4190. |
42 | XIA X H, TU J P, ZHANG Y Q, et al. Porous hydroxide nanosheets on preformed nanowires by electrodeposition: branched nanoarrays for electrochemical energy storage[J]. Chemistry of Materials, 2012, 24(19): 3793-3799. |
43 | MAI L Q, YANG F, ZHAO Y L, et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance[J]. Nature Communications, 2011, 2: 381. |
44 | XIE Y B. Photoelectrochemical performance of cadmium sulfide quantum dots modified titania nanotube arrays[J]. Thin Solid Films, 2016, 598: 115-125. |
45 | DU H X, XIE Y B, XIA C, et al. Preparation of a flexible polypyrrole nanoarray and its capacitive performance[J]. Materials Letters, 2014, 132: 417-420. |
46 | WANG Z L, HE X J, YE S H, et al. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage[J]. ACS Applied Materials & Interfaces, 2013, 6(1): 642-647. |
47 | TRAN H D, LI D, KANER R B. One-dimensional conducting polymer nanostructures: bulk synthesis and applications[J]. Advanced Materials, 2009, 21(14/15): 1487-1499. |
48 | XIE Y B, WANG D, JI J J. Preparation and supercapacitor performance of freestanding polypyrrole/polyaniline coaxial nanoarrays[J]. Energy Technology, 2016, 4(6): 714-721. |
49 | ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews, 2009, 38(9): 2520-2531. |
50 | DONG X, JIN H, WANG R, et al. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials[J]. Advanced Energy Materials, 2018, 8(11): 1702695. |
51 | MAO N, CHEN W, MENG J, et al. Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification[J]. Journal of Power Sources, 2018, 399: 406-413. |
52 | DU P C, DONG Y M, KANG H X, et al. Graphene-wrapped polyaniline nanowire array modified functionalized of carbon cloth for high-performance flexible solid-state supercapacitor[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14723-14733. |
53 | JIN C, WANG H T, LIU Y N, et al. High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors[J]. Electrochimica Acta, 2018, 270: 205-214. |
54 | GAO S, MI H Y, LI Z W, et al. Porous polyaniline arrays oriented on functionalized carbon cloth as binder-free electrode for flexible supercapacitors[J]. Journal of Electroanalytical Chemistry, 2019, 848: 113348. |
55 | HU S, DING L, SHEN Y Y, et al. Promoting oriented growth of a polyaniline array on carbon cloth through in situ chemical polymerization under a high voltage electric field for a flexible supercapacitor with high areal capacity and stability[J]. ACS Applied Energy Materials, 2020, 3(2): 1969-1978. |
56 | WANG K, MENG Q, ZHANG Y, et al. High-performance two- plyyarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays[J]. Advanced Materials, 2013, 25(10): 1494-1498. |
57 | WANG L, YE Y, LU X, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors[J]. Scientific Reports, 2013, 3: 3568-3577. |
58 | YU P P, LI Y Z, ZHAO X, et al. In situ growth of ordered polyaniline nanowires on surfactant stabilized exfoliated graphene as high-performance supercapacitor electrodes[J]. Synthetic Metals, 2013, 185: 89-95. |
59 | YU P P, LI Y Z, YU X Y, et al. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors[J]. Langmuir, 2013, 29(38): 12051-12058. |
60 | YU P P, LI Y Z, ZHAO X, et al. Graphene-wrapped polyaniline nanowire arrays on nitrogen-doped carbon fabric as novel flexible hybrid electrode materials for high-performance supercapacitor[J]. Langmuir, 2014, 30(18): 5306-5313. |
61 | NING G Q, LI T Y, YAN J, et al. Three-dimensional hybrid materials of fish scale-like polyaniline nanosheet arrays on graphene oxide and carbon nanotube for high-performance ultracapacitors[J]. Carbon, 2013, 54: 241-248. |
62 | LIU Y, MA Y, GUANG S Y, et al. Polyaniline-graphene composites with a three-dimensional array-based nanostructure for high-performance supercapacitors[J]. Carbon, 2015, 83: 79-89. |
63 | YU P, ZHAO X, LI Y, et al. Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors[J]. Applied Surface Science, 2017, 393: 37-45. |
64 | YE Y J, HUANG Z H, SONG Y, et al. Electrochemical growth of polyaniline nanowire arrays on graphene sheets in partially exfoliated graphite foil for high-performance supercapacitive materials[J]. Electrochimica Acta, 2017, 240: 72-79. |
65 | GAO X, YUE H, GUO E, et al. In-situ polymerization growth of polyaniline nanowire arrays on graphene foam for high specific capacitance supercapacitor electrode[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(23): 17939-17947. |
66 | PEI S F, ZHAO J P, DU J H, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48(15): 4466-4474. |
67 | WANG L, LU X P, LEI S B, et al. Graphene-based polyaniline nanocomposites: preparation, properties and applications[J]. Journal of Materials Chemistry A, 2014, 2(13): 4491-4509. |
68 | CHAUHAN N P S, MOZAFARI M, CHUNDAWAT N S, et al. High-performance supercapacitors based on polyaniline–graphene nanocomposites: some approaches, challenges and opportunities[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 13-29. |
69 | YU P P, ZHAO X, HUANG Z L, et al. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(35): 14413-14420. |
70 | ZHAO H B, YANG J, LIN T T, et al. Nanocomposites of sulfonic polyaniline nanoarrays on graphene nanosheets with an improved supercapacitor performance[J]. Chemistry, 2015, 21(2): 682-690 |
71 | WU X, WU G., TAN P, et al. Construction of microfluidic-oriented polyaniline nanorod arrays/graphene composite fibers for application in wearable micro-supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(19): 8940-8946. |
72 | TABRIZI A G, ARSALANI N, MOHAMMADI A, et al. A new route for the synthesis of polyaniline nanoarrays on graphene oxide for high-performance supercapacitors[J]. Electrochimica Acta, 2018, 265: 379-390. |
73 | XU J J, WANG K, ZU S Z, et al. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage[J]. ACS Nano, 2010, 4(9): 5019-5026. |
74 | LADRÓN-DE-GUEVARA A, BOSCÁ A, PEDRÓS J, et al. Reduced graphene oxide/polyaniline electrochemical supercapacitors fabricated by laser[J]. Applied Surface Science, 2019, 467/468: 691-697. |
75 | HU C L, ZHANG X Y, LIU B, et al. Orderly and highly dense polyaniline nanorod arrays fenced on carbon nanofibers for all-solid-state flexible electrochemical energy storage[J]. Electrochimica Acta, 2020, 338: 135846 |
76 | LI J, REN Y, REN Z, et al. Aligned polyaniline nanowires grown on the internal surface of macroporous carbon for supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(46): 23307-23315. |
77 | BEN-ISHAI M, PATOLSKY F. A route to high-quality crystalline coaxial core/multishell Ge@Si(GeSi)n and Si@(GeSi)n nanowire heterostructures[J]. Advanced Materials, 2010, 22(8): 902-906. |
78 | LI X, CHAI Y, ZHANG H, et al. Synthesis of polyaniline/tin oxide hybrid and its improved electrochemical capacitance performance[J]. Electrochimica Acta, 2012, 85: 9-15. |
79 | ZHANG J, SHU D, ZHANG T R, et al. Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route[J]. Journal of Alloys and Compounds, 2012, 532: 1-9. |
80 | RADHAKRISHNAN S, RAO C R K, VIJAYAN M. Performance of conducting polyaniline-DBSA and polyaniline-DBSA/Fe3O4 composites as electrode materials for aqueous redox supercapacitors[J]. Journal of Applied Polymer Science, 2011, 122(3): 1510-1518. |
81 | HU Z A, XIE Y L, WANG Y X, et al. Polyaniline/SnO2 nanocomposite for supercapacitor applications[J]. Materials Chemistry and Physics, 2009, 114(2/3): 990-995. |
82 | CHEN J, XIA Z, LI H, et al. Preparation of highly capacitive polyaniline/black TiO2 nanotubes as supercapacitor electrode by hydrogenation and electrochemical deposition[J]. Electrochimica Acta, 2015, 166: 174-182. |
83 | YU L, GAN M Y, MA L, et al. Facile synthesis of MnO2/polyaniline nanorod arrays based on graphene and its electrochemical performance[J]. Synthetic Metals, 2014, 198: 167-174. |
84 | LU X F, CHEN X Y, ZHOU W, et al. α-Fe2O3@PANI core-shell nanowire arrays as negative electrodes for asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 14843-14850. |
85 | XIE Y B, ZHU F. Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor[J]. Journal of Solid State Electrochemistry, 2017, 21(6): 1675-1685. |
86 | JABEEN N, XIA Q, YANG M, et al. Unique core-shell nanorod arrays with polyaniline deposited into mesoporous NiCo2O4 support for high-performance supercapacitor electrodes[J]. ACS Applied Materials & Interfaces, 2016, 8(9): 6093-6100. |
87 | XIA C, XIE Y B, DU H X, et al. Ternary nanocomposite of polyaniline/manganese dioxide/titanium nitride nanowire array for supercapacitor electrode[J]. Journal of Nanoparticle Research, 2015, 17(1): 1-12. |
88 | DING Y, SHENG H, GONG B, et al. Polyaniline/reduced graphene oxide nanosheets on TiO2 nanotube arrays as a high-performance supercapacitor electrode: understanding the origin of high rate capability[J]. Electrochimica Acta, 2021, 368: 137615. |
89 | XIE S, GAN M Y, MA L, et al. Synthesis of polyaniline-titania nanotube arrays hybrid composite via self-assembling and graft polymerization for supercapacitor application[J]. Electrochimica Acta, 2014, 120: 408-415. |
90 | XIE Y B, WANG D, ZHOU Y Z, et al. Supercapacitance of polypyrrole/titania/polyaniline coaxial nanotube hybrid[J]. Synthetic Metals, 2014, 198: 59-66. |
91 | ZHANG P, LIU Z M, LIU Y P, et al. Titanium dioxide@polyaniline core-shell nanowires as high-performance and stable electrodes for flexible solid-state supercapacitors[J]. Electrochimica Acta, 2015, 184: 1-7. |
92 | SHANKAR K, BASHAM J I, ALLAM N K, et al. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry[J]. The Journal of Physical Chemistry C, 2009, 113(16): 6327-6359. |
93 | GONG D, GRIMES C A, VARGHESE O K, et al. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334. |
94 | WANG D A, LIU Y, YU B, et al. TiO2 nanotubes with tunable morphology, diameter, and length: synthesis and photo-electrical/catalytic performance[J]. Chemistry of Materials, 2009, 21(7): 1198-1206. |
95 | CHEN S Y, LIU B, ZHANG X Y, et al. Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor[J]. Electrochimica Acta, 2019, 300: 373-379. |
96 | LI C, WANG Z P, LI S W, et al. Interfacial engineered polyaniline/sulfur-doped TiO2 nanotube arrays for ultralong cycle lifetime fiber-shaped, solid-state supercapacitors[J]. ACS Applied Materials & Interfaces, 2018, 10(21): 18390-18399. |
97 | LIU B, AYDIL E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells[J]. Journal of the American Chemical Society, 2009, 131(11): 3985-3990. |
98 | FU X, JIA C, WAN Z, et al. Hybrid electrochromic film based on polyaniline and TiO2 nanorods array[J]. Organic Electronics, 2014, 15(11): 2702-2709. |
99 | TANG Q Q, CHEN M M, YANG C Y, et al. Enhancing the energy density of asymmetric stretchable supercapacitor based on wrinkled CNT@MnO2 cathode and CNT@polypyrrole anode[J]. ACS Applied Materials & Interfaces, 2015, 7(28): 15303-15313. |
100 | HOU Y, CHENG Y W, HOBSON T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J]. Nano Letters, 2010, 10(7): 2727-2733. |
101 | WU Q H, CHEN M, WANG S S, et al. Preparation of sandwich-like ternary hierarchical nanosheets manganese dioxide/polyaniline/reduced graphene oxide as electrode material for supercapacitor[J]. Chemical Engineering Journal, 2016, 304: 29-38. |
102 | LI Q, LIU J H, ZOU J H, et al. Synthesis and electrochemical performance of multi-walled carbon nanotube/polyaniline/MnO2 ternary coaxial nanostructures for supercapacitors[J]. Journal of Power Sources, 2011, 196(1): 565-572. |
103 | MA L, SU L J, ZHANG J, et al. A controllable morphology GO/PANI/metal hydroxide composite for supercapacitor[J]. Journal of Electroanalytical Chemistry, 2016, 777: 75-84. |
104 | WANG Q Q, WANG J B, WANG H Y, et al. TiO2-C nanowire arrays@polyaniline core-shell nanostructures on carbon cloth for high performance supercapacitors[J]. Applied Surface Science, 2019, 493: 1125-1133. |
105 | CHEN S Y, ZHANG X Y, LIU B, et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires[J]. Electrochimica Acta, 2018, 292:435-445. |
[1] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[2] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[3] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
[4] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
[5] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[6] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[7] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[8] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[9] | 陈崇明, 曾四鸣, 罗小娜, 宋国升, 韩忠阁, 郁金星, 孙楠楠. 基于超交联聚合物前体的碳载钾基CO2吸附剂制备和性能[J]. 化工进展, 2023, 42(3): 1540-1550. |
[10] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[11] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
[12] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
[13] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
[14] | 刘丹, 范云洁, 王慧敏, 严政, 李鹏飞, 李家成, 曹雪波. 基于废弃PET的高值化功能性多孔碳材料及其应用进展[J]. 化工进展, 2023, 42(2): 969-984. |
[15] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |