1 | 张应龙, 张锐昌, 张咏梅, 等. 木素结构分析方法研究进展[J]. 安徽农业科学, 2011, 39(36): 22514-22517. | 1 | ZHANG Y L, ZHANG R C, ZHANG Y M, et al. Research progress of analysis methods of lignin structure[J]. Journal of Anhui Agricultural Sciences, 2011, 39(36): 22514-22517. | 2 | FLORIAN Z, VITTORIO V, RITA T A, et al. Isolation and characterization of lignin from beech wood and chestnut sawdust for the preparation of lignin nanoparticles (LNPs) from wood industry side-streams[J]. Holzforschung, 2018, 72(11): 961-972. | 3 | RICHTER A P, BROWN J S, BHARTI B, et al. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core[J]. Nature Nanotechnology, 2015, 10: 817. | 4 | PONNUSAMY V K, NGUYEN D D, DHARMARAJA J, et al. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential[J]. Bioresource Technology, 2019, 271: 462-472. | 5 | ESPINOZA-ACOSTA J L, TORRES-CHáVEZ P I, OLMEDO-MARTíNEZ J L, et al. Lignin in storage and renewable energy applications: a review[J]. Journal of Energy Chemistry, 2018, 27(5): 1422-1438. | 6 | 熊福全, 韩雁明, 王思群, 等. 纳米木质素的制备及应用研究现状[J]. 高分子材料科学与工程, 2016, 32(12): 156-161. | 6 | XIONG F Q, HAN Y M, WANG S Q, et al. Progress of preparation and application of lignin nanoparticles[J]. Polymer Materials Science and Engineering, 2016, 32(12): 156-161. | 7 | MOUTSOGLOU A, LAWBURGH B, LAWBURGH J. Fractional condensation and aging of pyrolysis oil from softwood and organosolv lignin[J]. Journal of Analytical and Applied Pyrolysis, 2018, 135: 350-360. | 8 | CAO L, YU I K M, LIU Y, et al. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects[J]. Bioresource Technology, 2018, 269: 465-475. | 9 | 韩宗敏, 韩颖. 木素作为化工原料的机遇与挑战[J]. 国际造纸, 2010, 29(4): 51-58. | 9 | HAN M Z, HAN Y. Lignin as a chemical feedstock:opportunities and challenges[J]. Paper and Biomaterials, 2010, 29(4): 51-58. | 10 | LI S X, LI M F, BIAN J, et al. Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent[J]. International Journal of Biological Macromolecules, 2019, 132: 836-843. | 11 | 陈啸, 成有为, 李希. 甲醇降解碱木质素[J]. 化学反应工程与工艺, 2012, 28(2): 129-137. | 11 | CHEN X, CHENG Y W, LI X. Degradation of alkali lignin in methanol[J]. Chemical Reaction Engineering and Technology, 2012, 28(2): 129-137. | 12 | 张美云, 李长亮, 夏新兴, 等. 木素的应用研究进展[J]. 纸和造纸, 2005(1): 77-81. | 12 | ZHANG M Y, LI C L, XIA X X, et al. Advances on the research of lignin application[J]. Paper and Paper Making, 2005(1): 77-81. | 13 | 王兴, 周景辉. 木素化学解聚产物特征及机理研究进展[J]. 中华纸业, 2014(4): 32-37. | 13 | WANG X, ZHOU J H. The research progress on characteristics of lignin’s chemical depolymerization products and its depolymerization mechanism[J]. China Pulp & Paper Industry, 2014(4): 32-37. | 14 | 廖俊和, 罗学刚. 木素在农业方面的应用研究进展[J]. 中国造纸, 2004, 23(7): 49-52. | 14 | LIAO J H, LUO X G. Study progress of lignin application in agriculture[J]. China Pulp & Paper, 2004, 23(7): 49-52. | 15 | GILCA I, GHITESCU R E, PUITEL A, et al. Obtaining lignin nanoparticles by chemical modification[J]. Iranian Polymer Journal, 2014, 23: 355-363. | 16 | 谢建军, 罗迎社. 木质素的结构及其改性研究进展[C]//第六届中国功能材料及其应用学术会议, 湖北武汉, 2007: 3296-3299. | 16 | XIE J J, LUO Y S. Progress in the structure of lignin and its modifications[C]// The 6th China Academic Conference on Functional Materials and Their Applications, Wuhan, Hubei, 2007: 3296-3299. | 17 | 王娟, 李师珍, 娄季攀, 等. 木素基多功能水处理剂的研究进展[J]. 造纸化学品, 2013, 25(4): 1-4. | 17 | WANG J, LI S Z, LOU J P, et al. Research development of lignin-based multi-function water treatment agents[J].Paper Chemicals, 2013, 25(4): 1-4. | 18 | ROJO E, PERESIN M S, SAMPSON W W, et al. Comprehensive elucidation of the effect of residual lignin on the physical, barrier, mechanical and surface properties of nanocellulose films[J]. Green Chemistry, 2015, 17(3): 1853-1866. | 19 | HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500. | 20 | PERESIN M S, HABIBI Y, ZOPPE J O, et al. Nanofiber composites of polyvinyl alcohol and cellulose nanocrystals: manufacture and characterization[J]. Biomacromolecules, 2010, 11(3): 674-681. | 21 | MATTINEN M L, VALLE-DELGADO J J, LESKINEN T, et al. Enzymatically and chemically oxidized lignin nanoparticles for biomaterial applications[J]. Enzyme and Microbial Technology, 2018, 111: 48-56. | 22 | ZHANG X, YANG M, YUAN Q, et al. Controlled preparation of corncob lignin nanoparticles and their size-dependent antioxidant properties: toward high value utilization of lignin[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17166-17174. | 23 | 冯婷婷, 郭建花. 纳米材料在生物医学中的应用[J]. 当代化工研究, 2018(2): 159-162. | 23 | FENG T T, GUO J H. Application of nanomaterials in biomedicine[J]. Chenmical Intermediate, 2018(2): 159-162. | 24 | 方佳丽, 陈新, 李唱, 等. 原位液体室透射电镜观察金纳米棒/石墨烯复合物的形成和运动过程[J]. 物理化学学报, 2019, 35(8): 808-815. | 24 | FANG J L, CHEN X, LI C, et al. Observation of the gold nanorods/graphene composite formation and motion with insitu liquid cell transmission electron microscopy[J]. Acta Physico-Chimica Sinica, 2019, 35(8): 808-815. | 25 | NAITO M. Nanoparticle technology handbook[M]. YOKOYAMA T, HOSOKAWA K, NOGI K. 3rd ed. Cambridge: Elsevier Science Publishers B. V., 2018: 904. | 26 | 王善勇, 王潇, 刘苇, 等. 纳米木素的机械法制备研究进展及其应用前景[J]. 中国造纸, 2018, 37(10): 66-71. | 26 | WANG S Y, WANG X, LIU W, et al. Mechanical preparation of nano-lignin: esearch progress and application prospect[J]. China Pulp & Paper, 2018, 37(10): 66-71. | 27 | DAI L, LIU R, HU L Q, et al. Lignin nanoparticle as a novel green carrier for the efficient delivery of resveratrol[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8241-8249. | 28 | MORSELLA M, GIAMMATTEO M, ARRIZZA L, et al. Lignin coating to quench photocatalytic activity of titanium dioxide nanoparticles for potential skin care applications[J]. RSC Advances, 2015, 5(71): 57453-57461. | 29 | ZHAO W, SIMMONS B, SINGH S, et al. From lignin association to nano-/micro-particle preparation: extracting higher value of lignin[J]. Green Chemistry, 2016, 18(21): 5693-5700. | 30 | BEISL S, MILTNER A, FRIEDL A. Lignin from micro- to nanosize: production methods[J]. International Journal of Molecular Sciences, 2017, 18(6):1244. | 31 | SIPPONEN M H, LANGE H, CRESTINI C, et al. Lignin for nano- and microscaled carrier systems: applications, trends, and challenges[J]. ChemSusChem, 2019, 12(10): 2039-2054. | 32 | BEISL S, FRIEDL A, MILTNER A. Lignin from micro- to nanosize: applications[J]. International Journal of Molecular Sciences. 2017, 18(11): 367. | 33 | FIGUEIREDO P, LINTINEN K, HIRVONEN J T, et al. Properties and chemical modifications of lignin: twards lignin-based nanomaterials for biomedical applications[J]. Progress in Materials Science, 2018, 93: 233-269. | 34 | HENN A, MATTINEN M L. Chemo-enzymatically prepared lignin nanoparticles for value-added applications[J]. World Journal of Microbiology and Biotechnology, 2019, 35(8): 125. | 35 | MYINT A A, LEE H W, SEO B, et al. One pot synthesis of environmentally friendly lignin nanoparticles with compressed liquid carbon dioxide as an antisolvent[J]. Green Chemistry, 2015, 18(7): 2129-2146. | 36 | RICHTER A P, BHARTI B, ARMSTRONG H B, et al. Synthesis and characterization of biodegradable lignin nanoparticles with tunable surface properties[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2016, 32(25): 6468. | 37 | LU Q, ZHU M, ZU Y, et al. Comparative antioxidant activity of nanoscale lignin prepared by a supercritical antisolvent (SAS) process with non-nanoscale lignin[J]. Food Chemistry, 2012, 135(1): 63-67. | 38 | GUPTA A K, MOHANTY S, NAYAK S K. Synthesis, characterization and application of lignin nanoparticles (LNPs)[J]. Materials Focus, 2014, 3(6): 444-454. | 39 | RAHMAN O U, SHI S, DING J, et al. Lignin nanoparticles: synthesis, characterization and corrosion protection performance[J]. New Journal of Chemistry, 2018, 42(5): 3415-3425. | 40 | 熊凯, 金灿, 孔振武. 纳米木质素及其无机粒子复合微球的制备与表征[C]//化学会第29届学术年会, 中国北京, 2014. | 40 | XIONG K, JIN C, KONG Z W. Preparation and characterization of lignin nanoparticle and its inorganic composite microspheres[C]//The 29th Annual Academic Conference in Chinese Chemical Society, Beijing, China, 2014. | 41 | NAIR S S, SUDHIR S, YUNQIAO P, et al. High shear homogenization of lignin to nanolignin and thermal stability of nanolignin-polyvinyl alcohol blends[J]. ChemSuschem, 2015, 7(12): 3513-3520. | 42 | 刘志明, 刘国超, 王海英. 一种粒径可控纳米木质素的制备方法: CN103145999A[P]. 2013-06-12. | 42 | LIU Z M, LIU G C, WANG H Y. Preparation method of nano lignin with controllable particle size: CN103145999A[P]. 2013-06-12. | 43 | GILCA I A, POPA V I, CRESTINI C. Obtaining lignin nanoparticles by sonication[J]. Ultrasonics Sonochemistry, 2015, 23: 369-375. | 44 | ZIMNIEWSKA M, KOZ?OWSKI R, BATOG J. Nanolignin modified linen fabric as a multifunctional product[J]. Molecular Crystals & Liquid Crystals, 2008, 484(1): 43-50. | 45 | MISHRA P K, WIMMER R. 65Ze solid and hollow spherical lignin colloids and its utilization in layer by layer deposition[J]. Ultrasonics Sonochemistry, 2017, 35: 45-50. | 46 | OKUYAMA K, WULED L I. Preparation of nanoparticles via spray route[J]. Chemical Engineering Science, 2003, 58(3): 537-547. | 47 | TARDY B L, RICHARDSON J J, GUO J, et al. Lignin nano- and microparticles as template for nanostructured materials: formation of hollow metal-phenolic capsules[J]. Green Chemistry, 2018, 20(6): 1335-1344. | 48 | JUIKAR S J, VIGNESHWARAN N. Extraction of nanolignin from coconut fibers by controlled microbial hydrolysis[J]. Industrial Crops and Products, 2017, 109: 420-425. | 49 | RANGAN A, MANCHIGANTI M V, THILAIVIDANKAN R M, et al. Novel method for the preparation of lignin-rich nanoparticles from lignocellulosic fibers[J]. Industrial Crops & Products, 2017, 103: 152-160. | 50 | 焦建梅, 徐桂英, 辛霞. 胆酸盐参与的自组装及微纳米材料制备[J]. 物理化学学报, 2019, 35(7): 684-696. | 50 | JIAO J M, XU G Y, XIN X. Effect of bile salts on self-assembly and construction of micro-/nanomaterials[J]. Acta Physico-Chimica Sinica, 2019, 35(7): 684-696. | 51 | TAO K, MAKAM P, AIZEN R, et al. Self-assembling peptide semiconductors[J]. Science, 2017, 358(6365): eaam9756. | 52 | 朱海. 分子自组装技术及其在表面改性中的应用[J]. 安庆师范学院学报(自然科学版), 2011, 17(1): 60-62. | 52 | ZHU H. Technology and application on surface modification of self-assembly[J]. Journal of Anqing Teachers College(Natural Science Edition), 2011, 17(1): 60-62. | 53 | QIAN Y, DENG Y H, QIU X Q, et al. Formation of uniform colloidal spheres from lignin, a renewable resource recovered from pulping spent liquor[J]. Green Chemistry, 2014, 16(4): 2156-2163. | 54 | 邓永红, 刘友法, 张伟健, 等. 木质素基偶氮聚合物胶体球的制备[J]. 物理化学学报, 2015(3): 505-511. | 54 | DENG Y H, LIU Y F, ZHANG W J, et al. Formation of colloidal spheres from a lignin-based azo polymer[J]. Acta Physico-Chimica Sinica, 2015(3): 505-511. | 55 | LIEVONEN M, VALLE-DELGADO J J, MATTINEN M L, et al. A simple process for lignin nanoparticle preparation[J]. Green Chemistry, 2016, 18(5): 1416-1422. | 56 | SALENTINIG S, SCHUBERT M. Softwood lignin self-assembly for nanomaterial design[J]. Biomacromolecules, 2017, 18(8): 2649-2653. | 57 | LIU Z H, HAO N, SHINDE S, et al. Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA)[J]. Green Chemistry, 2019, 21(2): 245-260. | 58 | LIU Z H, HAO N, SHINDE S, et al. Codesign of combinatorial organosolv pretreatment (COP) and lignin nanoparticles (LNPs) in biorefineries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2634-2647. | 59 | CHEN L, DOU J, MA Q, et al. Rapid and near-complete dissolution of wood lignin at ≤80℃ by a recyclable acid hydrotrope[J]. Science Advances, 2017, 3(9): 1-11. | 60 | BIAN H, CHEN L, GLEISNER R, et al. Producing wood-based nanomaterials by rapid fractionation of wood at 80℃ using a recyclable acid hydrotrope[J]. Green Chemistry, 2017, 19(14): 3370-3379. | 61 | WANG R, XIA G, ZHONG W, et al. Direct transformation of lignin into fluorescence-switchable graphene quantum dots and their application in ultrasensitive profiling of a physiological oxidant[J]. Green Chemistry, 2019, 21(12): 3343-3352. | 62 | CHEN L, ZHOU X, SHI Y, et al. Green synthesis of lignin nanoparticle in aqueous hydrotropic solution toward broadening the window for its processing and application[J]. Chemical Engineering Journal, 2018, 346: 217-225. | 63 | MA Q, CHEN L, WANG R, et al. Direct production of lignin nanoparticles (LNPs) from wood using p-toluenesulfonic acid in an aqueous system at 80℃: Characterization of LNP morphology, size, and surface charge[J]. Holzforschung, 2018, 72(11): 933-942. | 64 | FRANGVILLE C, RUTKEVI?IUS M, RICHTER A P, et al. Fabrication of environmentally biodegradable lignin nanoparticles[J]. ChemPhysChem, 2013, 13(18): 4235-4243. | 65 | SHIKINAKA K, FUJII N, EGASHIRA S, et al. Polyfunctional nanometric particles obtained from lignin, a woody biomass resource[J]. Green Chemistry, 2010, 12(11): 1914. | 66 | TIAN D, HU J G, CHANDRA R P, et al. Valorizing recalcitrant cellulolytic enzyme lignin via lignin nanoparticles fabrication in an integrated biorefinery[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(3): 2702-2710. | 67 | ALQAHTANI M S, ALQAHTANI A, AL-THABIT A, et al. Novel lignin nanoparticles for oral drug delivery[J]. Journal of Materials Chemistry B, 2019, 7(28): 4461-4473. | 68 | SI M, ZHANG J, HE Y, et al. Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose[J]. Green Chemistry, 2018, 20(15): 3414-3419. | 69 | 崔绍波, 卢忠远, 刘德春, 等. 界面聚合技术及其应用研究进展[J]. 化工进展, 2006, 25(1): 47-50. | 69 | CUI S B, LU Z Y, LIU D C, et al. Interfacial polymerization and its applications[J]. Chemical Industry and Engineering Progress, 2006, 25(1): 47-50. | 70 | YIAMSAWAS D, BAIER G, THINES E, et al. Biodegradable lignin nanocontainers[J]. RSC Advances, 2014, 4(23): 11661-11663. | 71 | YIAMSAWAS D, BECKERS S J, LU H, et al. Morphology-controlled synthesis of lignin nanocarriers for drug delivery and carbon materials[J]. ACS Biomaterials Science & Engineering, 2017, 3(10): 2375-2383. | 72 | CHEN N, DEMPERE L A, TONG Z. Synthesis of pH-responsive lignin-based nanocapsules for controlled release of hydrophobic molecules[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5204-5211. | 73 | NYPEL? T E, CARRILLO C A, ROJAS O J. Lignin supracolloids synthesized from (W/O) microemulsions: use in the interfacial stabilization of Pickering systems and organic carriers for silver metal[J]. Soft Matter, 2015, 11(10): 2046-2054. | 74 | TORTORA M, CAVALIERI F, MOSESSO P, et al. Ultrasound driven assembly of lignin into microcapsules for storage and delivery of hydrophobic molecules[J]. Biomacromolecules, 2014, 15(5): 1634-43. | 75 | 刘珂, 高金燕, 袁锦, 等. 动静态光散射技术在蛋白质研究中的应用进展[J]. 高分子通报, 2016(12): 16-21. | 75 | LIU K, GAO J Y, YUAN J, et al. Progress in application of dynamic and static light scattering on protein[J]. Polymer Bulletin, 2016(12): 16-21. | 76 | 程伟东, 孙民华, 李佳云, 等. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究[J]. 物理学报, 2007, 55(12): 6673-6676. | 76 | CHENG W D, SUN M H, LI J Y, et al. Small angle X-ray scattering research of the relaxation and crystallization process in Cu60Zr30Ti10 amorphous alloy[J]. Acta Physica Sinica, 2007, 55(12): 6673-6676. | 77 | 彭磊, 李晓月, 杜守继, 等. 高庙子钠基膨润土纳米孔隙结构的同步辐射小角散射[J]. 硅酸盐学报, 2019, 47(10): 1458-1466. | 77 | PENG L, LI X Y, DU S J, et al. Nano-pore structure of Gaomiaozi Na-bentonite by synchrotron radiation small angle X-ray scattering[J]. Journal of the Chinese Ceramic Society, 2019, 47(10): 1458-1466. | 78 | 雷晓蔚. 小角X射线散射的数据处理[J]. 重庆大学学报, 2006, 29(7): 102-104. | 78 | LEI X W. Data processing techniques of small-angle X-ray scattering[J]. Journal of Chongqing University, 2006, 29(7): 102-104. | 79 | 巩雁军, 刘汝庚, 赵晓萌, 等. 小角X射线散射在分子筛研究中的应用[J]. 化工学报, 2016, 67(8): 3146-3159. | 79 | GONG Y J, LIU R G, ZHAO X M, et al. Review on application of small angle X-ray scattering to synthesis and characterization of zeolite[J]. CIESC Journal, 2016, 67(8): 3146-3159. | 80 | ZHOU H, WILKES G L. Comparison of lamellar thickness and its distribution determined from DSC, SAXS, TEM and AFM for high-density polyethylene films having a stacked lamellar morphology[J]. Polymer, 1997, 38(23): 5735-5747. | 81 | CHENG G, ZHANG X, SIMMONS B, et al. Theory, practice and prospects of X-ray and neutron scattering for lignocellulosic biomass characterization: towards understanding biomass pretreatment[J]. Energy & Environmental Science, 2015, 8(2): 436-455. | 82 | QIAN Y, QIU X, ZHU S, et al. Lignin: a nature-inspired sun blocker for broad-spectrum sunscreens[J]. Green Chemistry, 2015, 17(1): 320-324. | 83 | QIU X, QIAN Y, ZHU S. Sunscreen performance of lignin from different technical resources and their general synergistic effect with synthetic sunscreens[J]. ACS Sustainable Chem. Eng, 2016, 4(7): 4029-4035. | 84 | LI Y, YANG D, LU S, et al. Encapsulating TiO2 in lignin-based colloidal spheres for high sunscreen performance and weak photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 6234-6242. | 85 | XIONG W, QIU X, YANG D, et al. A simple one-pot method to prepare UV-absorbent lignin/silica hybrids based on alkali lignin from pulping black liquor and sodium metasilicate[J]. Chemical Engineering Journal, 2017, 326: 803-810. | 86 | YONG Q, ZHONG X, YING L, et al. Fabrication of uniform lignin colloidal spheres for developing natural broad-spectrum sunscreens with high sun protection factor[J]. Industrial Crops & Products, 2017, 101: 54-60. | 87 | WANG B, SUN D, WANG H M, et al. Green and facile preparation of regular lignin nanoparticles with high yield and their natural broad-spectrum sunscreens[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(2): 2658-2666. | 88 | MATTA M K, ZUSTERZEEL R, PILLI N R, et al. Effect of sunscreen application under maximal use conditions on plasma concentration of sunscreen active ingredients: a randomized clinical trial[J]. The Journal of the American Medical Association, 2019, 321(21): 2082-2091. | 89 | YEARLA S R, PADMASREE K. Preparation and characterisation of lignin nanoparticles: evaluation of their potential as antioxidants and UV protectants[J]. Journal of Experimental Nanoscience, 2016, 11(4): 289-302. | 90 | GUPTA A K, MOHANTY S, NAYAK S K. Influence of addition of vapor grown carbon fibers on mechanical, thermal and biodegradation properties of lignin nanoparticle filled bio-poly(trimethylene terephthalate) hybrid nanocomposites[J]. RSC Advances, 2015, 5(69): 56028-56036. | 91 | JIANG C, HE H, JIANG H, et al. Nano-lignin filled natural rubber composites: preparation and characterization[J]. Express Polymer Letters, 2013, 7(5): 480-493. | 92 | 蒋灿. 木质素纳米化及其对非极性橡胶的补强作用研究[D]. 广州: 华南理工大学, 2014. | 92 | JIANG C. A study on the preparation of nanoscale lignin and its reinforcing effect on nonpolar rubber[D]. Guangzhou: South China University of Technology, 2014. | 93 | YANG W, DOMINICI F, FORTUNATI E, et al. Effect of lignin nanoparticles and masterbatch procedures on the final properties of glycidyl methacrylate-g-poly (lactic acid) films before and after accelerated UV weathering[J]. Industrial Crops & Products, 2015, 77: 833-844. | 94 | FAROOQ M, ZOU T, RIVIERE G, et al. Strong, ductile, and waterproof cellulose nanofibril composite films with colloidal lignin particles[J]. Biomacromolecules, 2019, 20(2): 693-704. | 95 | LI Y, ZHOU M, PANG Y, et al. Lignin-based microsphere: preparation and performance on encapsulating pesticide of avermectin[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3321-3328. | 96 | DENG Y, ZHAO H, YONG Q, et al. Hollow lignin azo colloids encapsulated avermectin with high anti-photolysis and controlled release performance[J]. Industrial Crops & Products, 2016, 87: 191-197. | 97 | SIPPONEN M H, LANGE H, AGO M, et al. Understanding lignin aggregation processes. A case study: budesonide entrapment and stimuli controlled release from lignin nanoparticles[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9342-9351. |
|