化工进展 ›› 2021, Vol. 40 ›› Issue (1): 282-296.DOI: 10.16085/j.issn.1000-6613.2020-0528
收稿日期:
2020-04-07
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
王爱勤
作者简介:
宗莉(1977—),女,副研究员,研究方向为环境修复材料。E-mail:基金资助:
Li ZONG1(), Jie TANG1,2, Bin MU1, Aiqin WANG1()
Received:
2020-04-07
Online:
2021-01-05
Published:
2021-01-12
Contact:
Aiqin WANG
摘要:
近年来,黏土矿物/炭复合吸附材料因具有来源丰富、结构可控和性能稳定等特点,成为碳基复合吸附材料研究热点之一。凹凸棒石是一种天然含水富镁铝硅酸盐黏土矿物,独特的孔道结构和一维棒晶使其成为理想的吸附材料和载体材料。本文综述了凹凸棒石/炭复合吸附材料的研究进展,围绕自然资源的高值化和废弃物的资源化利用,着重介绍了利用凹凸棒石脱色废土构筑环境友好型凹凸棒石/炭复合吸附材料的方法及再生应用进展,总结比较了不同方法制备复合吸附材料的形貌和性质及其对不同类型污染物的去除效果,并展望了凹凸棒石/炭复合吸附材料的未来发展方向,以期为黏土矿物/炭复合材料的研发及其在环境修复领域中的应用提供技术支撑。
中图分类号:
宗莉, 唐洁, 牟斌, 王爱勤. 凹凸棒石/炭复合吸附材料研究进展[J]. 化工进展, 2021, 40(1): 282-296.
Li ZONG, Jie TANG, Bin MU, Aiqin WANG. Research progress on attapulgite/carbon composites used as adsorbent[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 282-296.
碳源 | 制备方法 | 改性剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 污染物 | 最大吸附量 /mg·g-1 | 文献 |
---|---|---|---|---|---|---|---|
D-木糖 | 水热法 | — | 53.66 | 0.1560 | MB | 188.24 | [ |
葡萄糖 | 水热法 | 酸化处理凹凸棒石 | 103.41 | — | 刚果红 | 34.40 | [ |
纤维素 | 水热法 | FeSO4(NH4)2 SO4·6H2O | 46.45 | 0.1600 | MB | 37.79 | [ |
淀粉 | 水热法 | 空气氛,105℃,3h | 15.0 | — | MB | 49.8 | [ |
水热法 | CO2氛,550°C,3h | 259.0 | — | MB | 51.3 | ||
壳聚糖 | 水热法 | — | 80.65 | 0.2390 | MB | 226.24 | [ |
纤维素 | 水热法 | FeSO4(NH4)2 SO4·6H2O | 106 | 0.3022 | MB | 89.0 | [ |
热活化 | ZnCl2 | 1201 | 0.6157 | MB | 351.0 | ||
稻壳 | 水热法 | ZnCl2 | 471.0 | 0.3500 | X-GL染料 | 213.0 | [ |
甘蔗渣 | 焙烧法 | — | 178.51 | 0.1343 | 艳红X | 65.15 | [ |
脱色废土 | 煅烧法 | — | 104.92 | 0.2011 | MB | 132.72 | [ |
脱色废土 | 焙烧法 | — | 83.2 | 0.1690 | MV 4 | 50.76 | [ |
MV 3 | 69.93 | ||||||
碱性红 | 344.83 | ||||||
脱色废土 | 水热法 | KMnO4 | 94.6 | — | 染料BG | 199.9 | [ |
脱色废土 | 水热法 | FeCl3·6H2O CH3COONa·3H2O Na3C6H5O7·2H2O | — | — | MB | 254.83 | [ |
脱色废土 | 水热法 | Fe(NO3)3·9H2O, Ni(NO3)2·6H2O CO(NH2)2 | 65.7 | 0.2331 | MB | 271.28 | [ |
火锅油 | 煅烧法 | — | 35.2 | 0.0879 | MV | 215.83 | [ |
动物油 | 煅烧法 | — | 39.59 | 0.0928 | MV | 239.34 | [ |
染料废土 | 水热法 | Na2SiO3·9H2O | 427.9 | 0.2560 | MB | 281.7 | [ |
MgSO4·7H2O | MV | 244.4 |
表1 不同碳源和处理方式制备凹凸棒石/炭复合材料对染料的去除比较
碳源 | 制备方法 | 改性剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 污染物 | 最大吸附量 /mg·g-1 | 文献 |
---|---|---|---|---|---|---|---|
D-木糖 | 水热法 | — | 53.66 | 0.1560 | MB | 188.24 | [ |
葡萄糖 | 水热法 | 酸化处理凹凸棒石 | 103.41 | — | 刚果红 | 34.40 | [ |
纤维素 | 水热法 | FeSO4(NH4)2 SO4·6H2O | 46.45 | 0.1600 | MB | 37.79 | [ |
淀粉 | 水热法 | 空气氛,105℃,3h | 15.0 | — | MB | 49.8 | [ |
水热法 | CO2氛,550°C,3h | 259.0 | — | MB | 51.3 | ||
壳聚糖 | 水热法 | — | 80.65 | 0.2390 | MB | 226.24 | [ |
纤维素 | 水热法 | FeSO4(NH4)2 SO4·6H2O | 106 | 0.3022 | MB | 89.0 | [ |
热活化 | ZnCl2 | 1201 | 0.6157 | MB | 351.0 | ||
稻壳 | 水热法 | ZnCl2 | 471.0 | 0.3500 | X-GL染料 | 213.0 | [ |
甘蔗渣 | 焙烧法 | — | 178.51 | 0.1343 | 艳红X | 65.15 | [ |
脱色废土 | 煅烧法 | — | 104.92 | 0.2011 | MB | 132.72 | [ |
脱色废土 | 焙烧法 | — | 83.2 | 0.1690 | MV 4 | 50.76 | [ |
MV 3 | 69.93 | ||||||
碱性红 | 344.83 | ||||||
脱色废土 | 水热法 | KMnO4 | 94.6 | — | 染料BG | 199.9 | [ |
脱色废土 | 水热法 | FeCl3·6H2O CH3COONa·3H2O Na3C6H5O7·2H2O | — | — | MB | 254.83 | [ |
脱色废土 | 水热法 | Fe(NO3)3·9H2O, Ni(NO3)2·6H2O CO(NH2)2 | 65.7 | 0.2331 | MB | 271.28 | [ |
火锅油 | 煅烧法 | — | 35.2 | 0.0879 | MV | 215.83 | [ |
动物油 | 煅烧法 | — | 39.59 | 0.0928 | MV | 239.34 | [ |
染料废土 | 水热法 | Na2SiO3·9H2O | 427.9 | 0.2560 | MB | 281.7 | [ |
MgSO4·7H2O | MV | 244.4 |
碳源 | 制备方法 | 改性剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 去除率 /% | 文献 |
---|---|---|---|---|---|---|
葡萄糖 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 73 | [ |
葡萄糖 | 水热-磁化法 | FeSO4(NH4)2 SO4·6H2O | — | — | 57 | [ |
木糖 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 29 | [ |
果糖 | — | — | 23 | |||
蔗糖 | — | — | 20 | |||
纤维素 | — | — | 33 | |||
葡萄糖 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 70 | [ |
淀粉 | — | — | 46 | |||
纤维素 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 92 | [ |
油菜杆 | 焙烧法 | 酚醛树脂 | >90 | [ |
表2 不同凹凸棒石/炭复合材料对有机污染物苯酚的去除比较
碳源 | 制备方法 | 改性剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 去除率 /% | 文献 |
---|---|---|---|---|---|---|
葡萄糖 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 73 | [ |
葡萄糖 | 水热-磁化法 | FeSO4(NH4)2 SO4·6H2O | — | — | 57 | [ |
木糖 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 29 | [ |
果糖 | — | — | 23 | |||
蔗糖 | — | — | 20 | |||
纤维素 | — | — | 33 | |||
葡萄糖 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 70 | [ |
淀粉 | — | — | 46 | |||
纤维素 | 水热法 | FeSO4(NH4)2 SO4·6H2O | — | — | 92 | [ |
油菜杆 | 焙烧法 | 酚醛树脂 | >90 | [ |
碳源 | 制备方法 | 活化剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 抗生素 | 最大吸附量 /mg·g-1 | 文献 |
---|---|---|---|---|---|---|---|
马铃薯茎 | 限氧热解 | — | 90.40 | 0.1225 | 诺氟沙星 | 5.24 | [ |
向日葵叶 | 限氧热解 | FeCl3·6H2O | 74.06 | 0.1269 | OTC | 33.31 | [ |
限氧热解 | — | 68.62 | 0.1010 | OTC | 28.40 | ||
脱色废土 | 水热法 | Fe(NO3)3·9H2O, Ni(NO3)2·6H2O CO(NH2)2 | 65.7 | 0.2331 | CTC | 308.21 | [ |
火锅油 | 一步煅烧 | — | 35.2 | 0.0879 | TC | 256.48 | [ |
脱色废土 | 煅烧法 | — | 39.5 | 0.1058 | CTC | 336.37 | [ |
TC | 297.91 | ||||||
吸染料废土 | 水热法 | Na2SiO3·9H2O MgSO4·7H2O | 427.9 | 0.2560 | TC | 319.80 | [ |
表3 不同凹凸棒石/炭复合材料对抗生素的去除比较
碳源 | 制备方法 | 活化剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 抗生素 | 最大吸附量 /mg·g-1 | 文献 |
---|---|---|---|---|---|---|---|
马铃薯茎 | 限氧热解 | — | 90.40 | 0.1225 | 诺氟沙星 | 5.24 | [ |
向日葵叶 | 限氧热解 | FeCl3·6H2O | 74.06 | 0.1269 | OTC | 33.31 | [ |
限氧热解 | — | 68.62 | 0.1010 | OTC | 28.40 | ||
脱色废土 | 水热法 | Fe(NO3)3·9H2O, Ni(NO3)2·6H2O CO(NH2)2 | 65.7 | 0.2331 | CTC | 308.21 | [ |
火锅油 | 一步煅烧 | — | 35.2 | 0.0879 | TC | 256.48 | [ |
脱色废土 | 煅烧法 | — | 39.5 | 0.1058 | CTC | 336.37 | [ |
TC | 297.91 | ||||||
吸染料废土 | 水热法 | Na2SiO3·9H2O MgSO4·7H2O | 427.9 | 0.2560 | TC | 319.80 | [ |
碳源 | 制备方法 | 改性剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 重金属 | 最大吸附量 /mg·g-1 | 文献 |
---|---|---|---|---|---|---|---|
葡萄糖 | 水热法 | 乙二胺 | 63.8 | 0.3300 | Cu2+ | 125.4 | [ |
机油废土 | 煅烧法 | — | 41.6 | 0.1261 | Pb2+ | 205.23 | [ |
脱色废土 | 煅烧法 | — | 41.32 | 0.127 | Cu2+ | 32.32 | [ |
Pb2+ | 105.61 | ||||||
Cd2+ | 46.72 | ||||||
脱色废土 | 水热法 | KMnO4 | 94.6 | — | Pb2+ | 166.64 | [ |
脱色废土 | 水热法 | FeCl3·6H2O CH3COONa·3H2O Na3C6H5O7·2H2O | — | — | Pb2+ | 312.73 | [ |
脱色废土 | 水热法 | Fe(NO3)3·9H2O, Ni(NO3)2·6H2O CO(NH2)2 | 65.7 | 0.2331 | Pb2+ | 180.90 | [ |
火锅油 | 煅烧法 | — | 35.2 | 0.0879 | Pb2+ | 188.08 | [ |
表4 不同凹凸棒石/炭复合材料对重金属去除比较
碳源 | 制备方法 | 改性剂 | 比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 重金属 | 最大吸附量 /mg·g-1 | 文献 |
---|---|---|---|---|---|---|---|
葡萄糖 | 水热法 | 乙二胺 | 63.8 | 0.3300 | Cu2+ | 125.4 | [ |
机油废土 | 煅烧法 | — | 41.6 | 0.1261 | Pb2+ | 205.23 | [ |
脱色废土 | 煅烧法 | — | 41.32 | 0.127 | Cu2+ | 32.32 | [ |
Pb2+ | 105.61 | ||||||
Cd2+ | 46.72 | ||||||
脱色废土 | 水热法 | KMnO4 | 94.6 | — | Pb2+ | 166.64 | [ |
脱色废土 | 水热法 | FeCl3·6H2O CH3COONa·3H2O Na3C6H5O7·2H2O | — | — | Pb2+ | 312.73 | [ |
脱色废土 | 水热法 | Fe(NO3)3·9H2O, Ni(NO3)2·6H2O CO(NH2)2 | 65.7 | 0.2331 | Pb2+ | 180.90 | [ |
火锅油 | 煅烧法 | — | 35.2 | 0.0879 | Pb2+ | 188.08 | [ |
1 | WANG A Q, ZHENG Z K, LI R Q. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4: 414–423. |
2 | CHAUKURA N, CHIWORESO R, GWENZI W, et al. A new generation low-cost biochar-clay composite 'biscuit' ceramic filter for point-of-use water treatment[J]. Applied Clay Science, 2020, 185: 105409. |
3 | JING Y D, CAO Y Q, YANG Q Q, et al. Removal of Cd(Ⅱ) from aqueous solution by clay-biochar composite prepared from alternanthera philoxeroides and bentonite[J]. Bioresources, 2020, 15: 598-615. |
4 | SZCZEPANIK B, REDZIA N, FRYDEL L, et al. Synthesis and characterization of halloysite/carbon nanocomposites for enhanced NSAIDs adsorption from water[J]. Materials, 2019, 12(22): 3754. |
5 | PREMARATHNA K S D, RAJAPAKSHA A U, ANUSHKA U, et al. Biochar-based engineered composites for sorptive decontamination of water: a review[J]. Chemical Engineering Journal, 2019, 372: 536-550. |
6 | PREMARATHNA K S D, RAJAPAKSHA A U, ADASSORIYA N, et al. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media[J]. Journal of Environmental Management, 2019, 238: 315-322. |
7 | HAN H, RAFIQ M K, ZHOU T, et al. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants[J]. Journal of Hazardous Materials, 2019, 369: 780-796. |
8 | WANG A Q, WANG W B. Nanomaterials from clay minerals: a new approach to green functional materials[M]. Amsterdam: Elsevier, 2019: 537-587. |
9 | 王爱勤, 王文波, 郑易安, 等. 凹凸棒石棒晶束解离及其纳米功能复合材料[M].北京: 科学出版社, 2014: 128-180. |
WANG A Q, WANG W B, ZHEN Y A, et al. Dissociation of attapulgite crystal bundles and its functional nanocomposites[M]. Beijing: Science Press, 2014: 128-180. | |
10 | WU X P, ZHU W Y, ZHANG X L, et al. Catalytic deposition of nanocarbon onto palygorskite and its adsorption of phenol[J]. Apply Clay Science, 2011, 52: 400-406. |
11 | DONG J, ZHU Q, LI S B, et al. A comparative study about superamphiphobicity and stability of superamphiphobic coatings based on palygorskite[J]. Applied Clay Science, 2018, 165: 8-16. |
12 | MU B, WANG A Q. Regeneration and recycling of spent bleaching earth[M]//Handbook of eco materials. Belin: Springer, 2017. |
13 | WANG W B, MU B, ZHANG J P, et al. Attapulgite: from clay minerals to functional materials[J]. Scientia Sinica, 2018, 48: 1432-1451. |
14 | 吴雪平, 朱王勇, 张先龙, 等. 一步水热制备凹凸棒石/Fe3O4/炭复合材料吸附剂[J]. 炭素技术, 2014, 33(1): 23-27. |
WU X P, ZHU W Y, ZHANG X L, et al. Synthesis of palygorskite/Fe3O4/carbon adsorbent by one-step hydrothermal treatment[J]. Carbon Techniques, 2014, 33(1): 23-27. | |
15 | CHEN L F, LIANG H W, LU Y, et al. Synthesis of an attapulgite clay@carbon nanocomposite adsorbent by a hydrothermal carbonization process and their application in the removal of toxic metal ions from water[J]. Langmuir, 2011, 27: 8998-9004. |
16 | YANG G. Facile one-step synthetic route to mesoporous N-doped attapulgite (ATP)@Carbon composite through hydrothermal carbonization and the application to adsorbing toxic metal ions[J]. Chemistry Letters, 2015, 44(3): 369-371. |
17 | 徐艳青, 吴雪平, 刘存, 等. 生物质碳源对凹凸棒石有机改性及其吸附性能的影响[J].化学反应工程与工艺, 2013, 29(2): 119-124. |
XU Y Q, WU X P, LIU C, et al. Organic modification of palygorskite wih biomass by hydrothermal carbonization and characterization on its adsorption property[J]. Chemical Reaction Engineering and Technology, 2013, 29(2): 119-124. | |
18 | 朱王勇, 章燕. 水热法改性凹凸棒石及其吸附性能的研究[J]. 应用化工, 2010, 39: 487-489. |
ZHU W Y, ZHANG Y. Synthesis of organic modified palygorskite by hydrothermal method and its adsorption property[J]. Applied Chemical Industry, 2010, 39: 487-489. | |
19 | LIU W J, YANG T, XU J, et al. Preparation and adsorption property of attapulgite/carbon nanocomposite[J]. Environmental Progress & Sustainable Energy, 2015, 34(2): 437-444. |
20 | ZHONG L F, TANG A D, WEN X. New finding on Sb (2-3nm) nanoparticles and carbon simultaneous anchored on the porous palygorskite with enhanced catalytic activity[J]. Journal of Alloys and Compounds, 2018, 743: 394-402. |
21 | SUN L, YAN C J, CHEN Y, et al. Preparation of amorphous carbon nanotubes using attapulgite as template and furfuryl alcohol as carbon source[J]. Journal of Non-Crystalline Solids, 2012, 358: 2723-2726. |
22 | JIANG J L, CHEN Z G, DUAN C S, et al. Economical synthesis of amorphous carbon nanotubes and SBA-15 mesoporous materials using palygorskite as a templateand silica source[J]. Materials Letters, 2014, 1321: 425-427. |
23 | ZHONG L, TANG A, YAN P, et al. Palygorskite-template amorphous carbon nanotubes as a superior adsorbent for removal of dyes from aqueous solutions[J]. Journal of Colloid and Interface Science, 2019, 537: 450-457. |
24 | WU X P, GAO P, ZHANG X L. Synthesis of clay/carbon adsorbent through hydrothermal carbonization of cellulose on palygorskite[J]. Applied Clay Science, 2014, 95: 60–66. |
25 | WU X P, XU Y Q, ZHANG X L. Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite[J]. New Carbon Materials, 2015, 30(1): 71–78. |
26 | SARKAR B, LIU E, MCCLURE S, et al. Biomass derived palygorskite-carbon nanocomposites: synthesis, characterization and affinity to dye compounds[J]. Applied Clay Science, 2015, 114: 617-626. |
27 | TIAN G Y, WANG W B, ZHU Y F, et al. Carbon/attapulgite composites as recycled palm oil-decoloring and dye adsorbents[J]. Materials, 2018, 11(1): 86. |
28 | ZHOU Q, GAO Q, LUO W J, et al. One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 470: 248-257. |
29 | TIAN G Y, WANG W B, MU B, et al. Facile fabrication of carbon/attapulgite composite for bleaching of palm oil[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 50: 252-258. |
30 | ZHANG X L, CHENG L, WU X P. Activated carbon-coated palygorskite as an adsorbent by activation and its adsorption for methylene blue[J]. Journal of Environmental Science, 2015, 33: 97-105. |
31 | 陈冬梅, 熊飞. 碳化改性凹凸棒石处理含铬(Cr6+)废水[J]. 武汉理工大学学报, 2008(7): 96-98. |
CHEN D M, XIONG F. Attapulgite modified by carbon treat waste water containing chromium()[J]. Journal of Wuhan University of Technology, 2008(7): 96-98. | |
32 | 陈月云, 宋敏, 曹青青, 等. 凹凸棒土/炭复合材料的制备及其对有机物的吸附特性[J]. 硅酸盐通报, 2015, 37(5): 1693-1698. |
CHEN Y Y, SONG M, CAO Q Q, et al. Preparation of palygorskite/carbon composites and adsorption properties on organic compounds[J]. Bulletin of the Chinese Ceramic Society, 2015, 37(5): 1693-1698. | |
33 | 刘文杰, 杨彤, 徐姣, 等. 凹凸棒石/脱硅稻壳炭复合材料吸附Pb2+、Cu2+、Ni2+的对比研究[J]. 化工新型材料, 2015(5): 169-173. |
LIU W J, YANG T, XU J, et al. Comparison of attapulgite/activated carbon composite for the adsorption of Pb2+, Cu2+ and Ni2+[J]. New Chemical Materials, 2015(5): 169-173. | |
34 | LIU W J, YAO C, WANG M H, et al. Kinetics and thermodynamics characteristics of cationic yellow X-GL adsorption on attapulgite/ricehull-based activated carbon nanocomposites[J]. Environmental Progress & Sustainable Energy, 2013, 32: 655-662. |
35 | 秦泽勇, 姚超, 魏科年, 等. 凹凸棒石/稻壳活性炭复合材料的制备及对阳离子黄X-GL的吸附性能[J]. 非金属矿, 2011, 34(5): 58-61. |
QIN Z Y, YAO C, WEI K N, et al. Preparation and adsorption to cationic yellow X-GL of attapulgite/rice hull-based activated carbon composites[J]. Non-Metallic Mines, 2011, 34(5): 58-61. | |
36 | YIN Z H, LIU Y G, TAN X F, et al. Adsorption of 17β-estradiol by a novel attapulgite/biochar nanocomposite: characteristics and influencing factors[J]. Process Safety and Environmental Protection, 2019, 121: 155-164. |
37 | CHEN S, ZHOU M, WANG H F, et al. Adsorption of reactive brilliant red X-3B in aqueous solutions on clay-biochar composites from bagasse and natural attapulgite[J]. Water, 2018, 10(6): 703-719. |
38 | WU X P, XU Y Q, ZHANG X L, et al. Adsorption of low-concentration methylene blue onto a palygorskite/carbon composite[J]. New Carbon Materials, 2015, 30(1): 71-78. |
39 | LI Y, WANG Z W, XIE X Y, et al. Removal of norfloxacin from aqueous solution by clay-biochar composite prepared from potato stem and natural attapulgite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 514: 126-136. |
40 | WANG Z W, YANG X, QIN T T, et al. Efficient removal of oxytetracycline from aqueous solution by a novel magnetic clay-biochar composite using natural attapulgite and cauliflower leaves[J]. Environmental Science and Pollution Research, 2019, 26: 7463-7475. |
41 | WANG Z, JING Z Q, KONG Y, et al. Reduction of COD from micro-polluted water through adsorption of activated carbon-attapulgite composite adsorbent[J]. Key Engineering Materials, 2010, 450: 445-448. |
42 | WANG Z, JING Z Q, KONG Y, et al. Comparative studies of activated carbon-attapulgite and zeolite-attapulgite composite adsorbent on Congo Red adsorption[J]. Applied Mechanics and Materials, 2010, 33: 34-37. |
43 | WANG X H, GU Y L, TAN X F, et al. Functionalized biochar/clay composites for reducing the bioavailable fraction of arsenic and cadmium in river sediment[J]. Environmental Toxicology and Chemistry, 2019, 38(10): 2337-2347. |
44 | WANG D F, ZHANG G L, ZHOU L L, et al. Immobilizing arsenic and copper ions in manure using a nanocomposite[J]. Journal of Agricultural and Food Chemistry, 2017, 65: 8999-9005. |
45 | RAWAL A, JOESPH S, HOOK J, et al. Mineral-biochar composites: molecular structure and porosity[J]. Environ. Sci. Technol., 2016, 50(14): 7706-7714. |
46 | REDDY D H K, LEE S M. Magnetic biochar composite: facile synthesis, characterization, and application for heavy metal removal[J].Colloids Surfaces A: Physicochemical and Engineering Aspects, 2014, 454: 96-103. |
47 | RAFIQ M, JOSEPH S, LI F, et al. Pyrolysis of attapulgite clay blended with yak dung enhances pasture growth and soil health: characterization and initial field trials[J]. Science of the Total Environment, 2017, 607(16): 184-194. |
48 | TSAI W T, LAI C W. Adsorption of herbicide paraquat by clay mineral regenerated from spent bleaching earth[J]. J. Hazard Mater., 2006, 134(1): 144-148. |
49 | MANA M, OUALI M S, DE MENORVAL L C, et al. Regeneration of spent bleaching earth by treatment with cethyltrimethylammonium bromide for application in elimination of acid dye[J]. Chem. Eng. J., 2011, 174(1): 275-280 |
50 | MALAKOOTIAN M, JAFARZADEH N A, MOUSSAVI G, et al. Investigation of ammonium ion adsorption onto regenerated spent bleaching earth: parameters and equilibrium study[J]. Environ. Eng. Manage. J., 2016, 15(4): 773-782. |
51 | 刘音, 曹祖宾, 石薇薇, 等. 废机油再生加工工艺研究[J]. 辽宁石油化工大学学报, 2013, 33(4): 21-25. |
LIU Y, CAO Z B, SHI W W, et al. Processing technology on the regeneration of spent lubricating Oil[J]. Journal of Liaoning Shihua University, 2013, 33(4): 21-25. | |
52 | LEBODA R, CHODOROWSKI S, ZIEBA J, et al. Effect of the carbonaceous matter deposition on the textural and surface properties of complex carbon-mineral adsorbents prepared on the basis of palygorskite[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2001, 178(1): 113-128. |
53 | LEBODA R, CHARMAS B, CHODOROWSKI S, et al. Improved carbon-mineral adsorbents derived from cross-linking carbon-bearing residues in spent palygorskite[J]. Microporous and Mesoporous Materials, 2006, 87: 207–221. |
54 | 唐洁. 凹凸棒石/碳复合吸附剂的构筑与性能研究[D]. 北京:中国科学院大学, 2018. |
TANG J. Fabrication and properties of attapulgite/carbon adsorbents[D]. Beijing: Unviersity of Chinese Academy of Sciences, 2018. | |
55 | BOUKERROUI A, OUALI M S. Regeneration of a spent bleaching earth and its reuse in the refining of edible oil[J]. Journal of Chemical Technology & Biotechnology, 2000, 75(9): 773-776. |
56 | MANA M, OUALI M S, LINDHEIMER M, et al. Removal of basic dyes from aqueous solutions with a treated spent bleaching earth[J]. Journal of Colloid and Interface Science, 2007, 307(1): 9-16. |
57 | TSAI W T, CHEN C H, YANG J M, et al. Adsorption of paraquat on the physically activated bleaching earth waste from soybean oil processing plant[J]. Journal of Environmental Sciences and Health, Part B-Pesticides Food Contaminants and Agricultural Wastes, 2002, 37: 453-463. |
58 | TSAI W T, CHANG Y M, LAI C W, et al. Adsorption of basic dyes in aqueous solution by clay adsorbent from regenerated bleaching earth[J]. Applied Clay Science, 2005, 29: 149-154. |
59 | TANG J, MU B, ZONG L, et al. Fabrication of attapulgite/carbon composites from spent bleaching earth for the efficient adsorption of methylene blue[J]. RSC Advances, 2015, 5(48): 38443-38451. |
60 | TANG J, MU B, ZHENG M S, et al. One-step calcination of the spent bleaching earth for the efficient removal of heavy metal ions[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(6): 1125-1135. |
61 | TANG J, MU B, WANG W B, et al. Fabrication of manganese dioxide/carbon/attapulgite composites derived from spent bleaching earth for adsorption of Pb(Ⅱ) and Brilliant green[J]. RSC Advances, 2016, 6: 36534-36543. |
62 | TANG J, MU B, ZONG L, et al. Facile and green fabrication of magnetically recyclable carboxyl-functionalized attapulgite/carbon nanocomposites derived from spent bleaching earth for wastewater treatment[J]. Chemical Engineering Journal, 2017, 322: 102-114. |
63 | ZHANG T, YUE X J, GAO L L, et al. Hierarchically porous bismuth oxide/layered double hydroxide composites: preparation, characterization and iodine adsorption[J]. Journal of Cleaner Production, 2017, 144: 220-227. |
64 | TANG J, MU B, ZONG L, et al. One-step synthesis of magnetic attapulgite/carbon supported NiFe-LDHs by hydrothermal process of spent bleaching earth for pollutant removal[J]. Journal of Cleaner Production, 2018, 172: 673-685. |
65 | TANG J, ZONG L, WANG A Q, et al. From waste hot-pot oil as carbon precursor to development of recyclable attapulgite/carbon composites for wastewater treatment[J]. Journal of Environmental Sciences, 2019, 1: 346-358. |
66 | CHEN F, ZHAO E, KIM T, et al. Organosilica nanoparticles with an intrinsic secondary amine: an efficient and reusable adsorbent for dyes[J]. ACS Appl. Mater. Inter., 2017, 9: 15566-15576. |
67 | OTHMAN A, VARGO P, ANDREESCU S. Recyclable adsorbents based on ceria nanostructures on mesoporous silica beads for the removal and recovery of phosphate from eutrophic waters[J]. ACS Appl. Mater. Inter., 2019, 2: 7008-7018. |
68 | TAN Y, WANG K, YAN Q, et al. Synthesis of amino-functionalized waste wood flour adsorbent for high-capacity Pb() adsorption[J]. ACS Omega, 2019, 4: 10475-10484. |
69 | WANG W B, WANG F, KANG Y R, et al. Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite[J]. Water Air and Soil Pollution, 2015, 226(3): 83. |
70 | TANG J, ZONG L, MU B, et al. Preparation and cyclic utilization assessment of palygorskite/carbon composites for sustainable efficient removal of methyl violet[J]. Applied Clay Science, 2018, 161: 317-325. |
71 | TANG J, ZONG L, MU B, et al. Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal[J]. The Korean Journal of Chemical Engineering, 2018, 35: 1650-1661. |
72 | WANG W B, LU T T, CHEN Y, et al. Mesoporous silicate/carbon composites derived from dye-loaded palygorskite clay waste for efficient removal of organic contaminants[J]. Science of the Total Environment, 2019, 696: 133955. |
73 | TIAN G Y, WANG W B, ZONG L, et al. From spent dye-loaded palygorskite to a multifunctional palygorskite/carbon/Ag nanocomposite[J]. RSC Adv., 2016, 6(48): 41696-41706. |
74 | DAI Y, ZHANG N, XING C, et al. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review[J]. Chemosphere, 2019, 223: 12-27. |
75 | WANG X H, GU Y L, TAN X, et al. Functionalized biochar/clay composites for reducing the bioavailable fraction of arsenic and cadmium in river sediment[J]. Environmental Toxicology and Chemistry, 2019, 38: 2337-2347. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[3] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[6] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[7] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[8] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[9] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[10] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[11] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[12] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[13] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[14] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[15] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |