化工进展 ›› 2021, Vol. 40 ›› Issue (1): 440-450.DOI: 10.16085/j.issn.1000-6613.2020-0450
陈宏1,2(), 吴军1,2, 陈晨3, 涂智1, 禹丽娥1, 杨恩喆1, 杨敏1,2, 肖本益2,4()
收稿日期:
2020-03-24
出版日期:
2021-01-05
发布日期:
2021-01-12
通讯作者:
肖本益
作者简介:
陈宏(1983—),男,博士,副教授,研究方向为环境污染治理技术。E-mail:基金资助:
Hong CHEN1,2(), Jun WU1,2, Chen CHEN3, Zhi TU1, Li’e YU1, Enzhe YANG1, Min YANG1,2, Benyi XIAO2,4()
Received:
2020-03-24
Online:
2021-01-05
Published:
2021-01-12
Contact:
Benyi XIAO
摘要:
化石燃料的消耗和有机废弃物的大量排放带来了严重的环境问题,而利用有机废弃物进行厌氧发酵制氢是可持续且环境友好的。为了克服单一底物厌氧发酵制氢存在的因营养元素不均衡、毒性抑制和微生物种类较少等导致氢气产率较低的局限性,不同类型的底物厌氧共发酵制氢技术得以开发,然而现阶段仍然存在过程机理不清楚和关键工艺参数不明确等问题。本文综述了有机废弃物厌氧共发酵制氢的必要性、优点及主要影响因素,归纳了不同有机废弃物混合比、有机负荷、发酵温度、水力停留时间、初始pH以及固液比、搅拌方式和反应器类型等关键工艺参数特征及其范围,分析比较了不同有机废弃物厌氧共发酵体系的氢气浓度及产率、发酵液pH、氨氮和挥发性脂肪酸及其组成等工艺特性,总结了产氢功能菌群及其产氢特性及不稳定系统特征微生物。随后指出了目前研究存在的一些不足,并对其在底物利用范围及其预处理、过程机理、技术完善及其综合评估等方面的研究与应用前景进行了展望,为有机废弃物厌氧共发酵制氢技术的研发与应用提供依据。
中图分类号:
陈宏, 吴军, 陈晨, 涂智, 禹丽娥, 杨恩喆, 杨敏, 肖本益. 有机废弃物厌氧共发酵制氢研究进展[J]. 化工进展, 2021, 40(1): 440-450.
Hong CHEN, Jun WU, Chen CHEN, Zhi TU, Li’e YU, Enzhe YANG, Min YANG, Benyi XIAO. Advances in biohydrogen production from anaerobic co-fermentation of organic wastes[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 440-450.
工艺参数 | 运行特性指标 | 参考文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
底物及混合比 | 反应器 类型 | 发酵 温度 /℃ | 有机 负荷 | 初始 pH | HRT | 发酵液pH | 氨氮(N) /mg?L-1 | VFAs | 氢气产率 | 氢气 体积分数 /% | |||
总含量 | 乙酸 占比 /% | 丁酸 占比 /% | |||||||||||
食品废弃物∶市政污泥(3∶1,VS) | 批次 | 35 | 20g VS·L-1 | 6.0±0.1 | — | — | — | 9.71g·L-1 | 45.31 | 49.12 | 174.6mL·(g VSadded)-1 | — | [ |
市政污泥∶黑麦草(30∶70,VS) | 批次 | 37 | 12g VS·L-1 | 7.0 | — | — | — | 900mg·Lp-1① | 79.00 | 15.00① | 60mL·(g VSadded)-1 | — | [ |
市政污泥∶杨树叶(20∶80,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 5.51 | — | 115mg·(g VSadded)-1① | 75.00① | 18.00① | 37.8mL·(g VSadded)-1 | — | [ |
市政污泥∶草渣(3∶7,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 6.01 | 44.64 | 13.1mmol·L-1 | 95① | — | 45.6mL·(g VSadded)-1 | — | [ |
市政污泥∶废花卉(10∶90,VS) | 批次 | 37 | 10g VS·L-1 | — | — | — | — | 1400mg·L-1① | 56.90 | 30.00① | 39mL·(g VSadded)-1 | — | [ |
食品废弃物∶园林垃圾(10∶90,VS) | 批次 | 70 | 8.5g VS·L-1 | — | — | — | — | — | 优势② | — | 46±1mL·(g VSadded)-1 | — | [ |
食品废弃物∶市政污泥(80∶20,TS) | 批次 | 37±1 | 25g TS·L-1 | 7.21 | — | 6.12~6.51 | 683.20 | 281.84mg·(g VS)-1 | — | 62.19 | 60.23mL·(g VSadded)-1 | 62.40 | [ |
食品废弃物∶厌氧污泥(54∶46,VS) | CSTR | 55 | 39.6 g VS·(L·d)-1 | 控制 5.0~5.5 | 0.8d | — | 62.92±11.90 | (4858±965.8)mg·L-1 | 共占83.0~90.0 | (76.8±0.7)mL·(g VSadded)-1 | 54.5±5.6 | [ | |
食品废弃物∶市政污泥(80∶20,VS) | ASBR | 35 | 42 g TCOD(L·d)-1 | 7.0±0.1 | 72h | — | — | 13.9g·L-1 | 15.00 | 40.00 | 62.0mL·(g VSadded)-1 | 50 | [ |
食品废弃物∶活性污泥(1∶5,质量) | CSTR | 37 | 14.6 kg VS·(m3·d)-1 | 控制 5.54±0.02 | 3.0d | — | — | (8204±828)mg·L-1 | — | 60.68① | (8.6±4.8)L·(kg VS·d)-1 | 18.40±6.3 | [ |
土豆皮∶鸡粪(7∶3,VS) | 批次 | 35±1 | 40g VS·L-1 | 5.5 | — | — | — | 6338.01mg·L-1 | 30.00① | 60.00① | 41.02mL·(g VSadded)-1 | 37.29 | [ |
食品废弃物∶鸡粪(50∶50,体积) | 批次 | 35 | 940g VS·L-1 | 7.0 | — | — | — | 0.8g·L-1① | 优势② | — | 120.97mL·(g COD)-1 | 53.35 | [ |
食品废弃 物∶鸡粪(7∶3,体积) | 批次 | 35 | — | 7.0 | — | 5.8 | 344.71 | 1143.1mg·L-1 | 12.90 | 32.40 | 60.8mL·(g VSadded)-1 | — | [ |
表1 有机废弃物厌氧共发酵制氢工艺及运行特性
工艺参数 | 运行特性指标 | 参考文献 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
底物及混合比 | 反应器 类型 | 发酵 温度 /℃ | 有机 负荷 | 初始 pH | HRT | 发酵液pH | 氨氮(N) /mg?L-1 | VFAs | 氢气产率 | 氢气 体积分数 /% | |||
总含量 | 乙酸 占比 /% | 丁酸 占比 /% | |||||||||||
食品废弃物∶市政污泥(3∶1,VS) | 批次 | 35 | 20g VS·L-1 | 6.0±0.1 | — | — | — | 9.71g·L-1 | 45.31 | 49.12 | 174.6mL·(g VSadded)-1 | — | [ |
市政污泥∶黑麦草(30∶70,VS) | 批次 | 37 | 12g VS·L-1 | 7.0 | — | — | — | 900mg·Lp-1① | 79.00 | 15.00① | 60mL·(g VSadded)-1 | — | [ |
市政污泥∶杨树叶(20∶80,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 5.51 | — | 115mg·(g VSadded)-1① | 75.00① | 18.00① | 37.8mL·(g VSadded)-1 | — | [ |
市政污泥∶草渣(3∶7,VS) | 批次 | 37 | 10g VS·L-1 | 7.0 | — | 6.01 | 44.64 | 13.1mmol·L-1 | 95① | — | 45.6mL·(g VSadded)-1 | — | [ |
市政污泥∶废花卉(10∶90,VS) | 批次 | 37 | 10g VS·L-1 | — | — | — | — | 1400mg·L-1① | 56.90 | 30.00① | 39mL·(g VSadded)-1 | — | [ |
食品废弃物∶园林垃圾(10∶90,VS) | 批次 | 70 | 8.5g VS·L-1 | — | — | — | — | — | 优势② | — | 46±1mL·(g VSadded)-1 | — | [ |
食品废弃物∶市政污泥(80∶20,TS) | 批次 | 37±1 | 25g TS·L-1 | 7.21 | — | 6.12~6.51 | 683.20 | 281.84mg·(g VS)-1 | — | 62.19 | 60.23mL·(g VSadded)-1 | 62.40 | [ |
食品废弃物∶厌氧污泥(54∶46,VS) | CSTR | 55 | 39.6 g VS·(L·d)-1 | 控制 5.0~5.5 | 0.8d | — | 62.92±11.90 | (4858±965.8)mg·L-1 | 共占83.0~90.0 | (76.8±0.7)mL·(g VSadded)-1 | 54.5±5.6 | [ | |
食品废弃物∶市政污泥(80∶20,VS) | ASBR | 35 | 42 g TCOD(L·d)-1 | 7.0±0.1 | 72h | — | — | 13.9g·L-1 | 15.00 | 40.00 | 62.0mL·(g VSadded)-1 | 50 | [ |
食品废弃物∶活性污泥(1∶5,质量) | CSTR | 37 | 14.6 kg VS·(m3·d)-1 | 控制 5.54±0.02 | 3.0d | — | — | (8204±828)mg·L-1 | — | 60.68① | (8.6±4.8)L·(kg VS·d)-1 | 18.40±6.3 | [ |
土豆皮∶鸡粪(7∶3,VS) | 批次 | 35±1 | 40g VS·L-1 | 5.5 | — | — | — | 6338.01mg·L-1 | 30.00① | 60.00① | 41.02mL·(g VSadded)-1 | 37.29 | [ |
食品废弃物∶鸡粪(50∶50,体积) | 批次 | 35 | 940g VS·L-1 | 7.0 | — | — | — | 0.8g·L-1① | 优势② | — | 120.97mL·(g COD)-1 | 53.35 | [ |
食品废弃 物∶鸡粪(7∶3,体积) | 批次 | 35 | — | 7.0 | — | 5.8 | 344.71 | 1143.1mg·L-1 | 12.90 | 32.40 | 60.8mL·(g VSadded)-1 | — | [ |
底物类型 | 接种物 | 接种物预处理 | 共酵温度 /℃ | 嗜热 产氢菌属 | 嗜热 厌氧菌属 | 梭状芽 孢杆菌属 | 肠杆 菌属 | 芽孢杆菌属 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
厌氧污泥∶杨树叶 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 70.1% | 14.4% | 10.1% | [ |
厌氧污泥∶废花卉 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 48.1% | 37.8% | 1.4% | [ |
食品废弃物∶厌氧污泥 | 厌氧污泥 | 重复曝气7d(DO<0.5mg/L) | 55 | 4.3% | 20.2% | 18.1% | — | — | [ |
食品废弃物∶市政污泥 | 厌氧污泥 | 热预处理(90℃,15min) | 35 | — | — | √ | — | √ | [ |
城市固体垃圾∶厌氧污泥 | 厌氧污泥 | 无 | 55 | — | — | √ | — | — | [ |
表2 有机废弃物厌氧共发酵制氢系统的主要功能菌群
底物类型 | 接种物 | 接种物预处理 | 共酵温度 /℃ | 嗜热 产氢菌属 | 嗜热 厌氧菌属 | 梭状芽 孢杆菌属 | 肠杆 菌属 | 芽孢杆菌属 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
厌氧污泥∶杨树叶 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 70.1% | 14.4% | 10.1% | [ |
厌氧污泥∶废花卉 | 厌氧污泥 | 热预处理(121℃,30min) | 37 | — | — | 48.1% | 37.8% | 1.4% | [ |
食品废弃物∶厌氧污泥 | 厌氧污泥 | 重复曝气7d(DO<0.5mg/L) | 55 | 4.3% | 20.2% | 18.1% | — | — | [ |
食品废弃物∶市政污泥 | 厌氧污泥 | 热预处理(90℃,15min) | 35 | — | — | √ | — | √ | [ |
城市固体垃圾∶厌氧污泥 | 厌氧污泥 | 无 | 55 | — | — | √ | — | — | [ |
1 | XIA A, JACOB A, HERRMANN C, et al. Fermentative bio-hydrogen production from galactose[J]. Energy, 2016, 96: 346-354. |
2 | LUNPROM S, PHANDUANG O, SALAKKAM A, et al. Bio-hythane production from residual biomass of Chlorella sp. biomass through a two-stage anaerobic digestion[J]. International Journal of Hydrogen Energy, 2019, 44(6): 3339-3346. |
3 | HAN W, HUANG J, ZHAO H G, et al. Continuous biohydrogen production from waste bread by anaerobic sludge[J]. Bioresource Technology, 2016, 212: 1-5. |
4 | HANS M, KUMAR S. Biohythane production in two-stage anaerobic digestion system[J]. International Journal of Hydrogen Energy, 2019, 44(32): 17363-17380. |
5 | KUMAR G S, KUMARI S, REDDY K, et al. Trends in biohydrogen production: major challenges and state-of-the-art developments[J]. Environmental Technology, 2013, 34(13/14): 1653-1670. |
6 | MURI P, MARINŠEK-LOGAR R, DJINOVIĆ P, et al. Influence of support materials on continuous hydrogen production in anaerobic packed-bed reactor with immobilized hydrogen producing bacteria at acidic conditions[J]. Enzyme and Microbial Technology, 2018, 111:87-96. |
7 | KUMAR G, MATHIMANI T, RENE E R, et al. Application of nanotechnology in dark fermentation for enhanced biohydrogen production using inorganic nanoparticles[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13106-13113. |
8 | WANG J, WAN W. Factors influencing fermentative hydrogen production: a review[J]. International Journal of Hydrogen Energy, 2009, 34(2): 799-811. |
9 | CHENG J, DING L K, LIN R, et al. Fermentative biohydrogen and biomethane co-production from mixture of food waste and sewage sludge: effects of physiochemical properties and mix ratios on fermentation performance[J]. Applied Energy, 2016, 184: 1-8. |
10 | YANG G, WANG J L. Co-fermentation of sewage sludge with ryegrass for enhancing hydrogen production: performance evaluation and kinetic analysis[J]. Bioresource Technology, 2017,243: 1027-1036. |
11 | YANG G, HU Y M, WANG J L. Biohydrogen production from co-fermentation of fallen leaves and sewage sludge[J]. Bioresource Technology, 2019, 285: 121342. |
12 | 张文哲, 陈静, 刘玉, 等. 中温和高温厌氧消化的比较[J]. 化工进展, 2018, 37(12): 4853-4861. |
ZHANG Wenzhe, CHEN Jing, LIU Yu, et al. Comparison of mesophilic and thermophilic anaerobic digestion[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4853-4861. | |
13 | BOLZONELLA D, BATTISTA F, CAVINATO C, et al. Recent developments in biohythane production from household food wastes: a review[J]. Bioresource Technology, 2018, 257: 311-319. |
14 | YANG G, WANG J L. Biohydrogen production by co-fermentation of sewage sludge and grass residue: effect of various substrate concentrations[J]. Fuel, 2019, 237: 1203-1208. |
15 | WANG H X, XU J L, SHENG L X, et al. A review on bio-hydrogen production technology[J]. International Journal of Energy Research, 2018, 42(11): 3442-3453. |
16 | YANG G, WANG J L. Synergistic biohydrogen production from flower wastes and sewage sludge[J]. Energy & Fuels, 2018, 32(6):6879-6886. |
17 | ELBESHBISHY E, DHAR B R, NAKHLA G, et al. A critical review on inhibition of dark biohydrogen fermentation[J]. Renewable and Sustainable Energy Reviews, 2017, 79: 656-668. |
18 | SRIVASTAVA N, SRIVASTAVA M, MALHOTRA B D, et al. Nanoengineered cellulosic biohydrogen production via dark fermentation: a novel approach[J]. Biotechnology Advances, 2019, 37(6): 107384. |
19 | CHONG M L, SABARATNAM V, SHIRAI Y, et al. Biohydrogen production from biomass and industrial wastes by dark fermentation[J]. International Journal of Hydrogen Energy, 2009, 34(8): 3277-3287. |
20 | GADHE A, SONAWANE S S, VARMA M N. Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater[J]. International Journal of Hydrogen Energy, 2015, 40(13): 4502-4511. |
21 | NORDELL E, NILSSON B, NILSSON PÅL S, et al. Co-digestion of manure and industrial waste-the effects of trace element addition[J]. Waste Management, 2016, 47: 21-27. |
22 | TAMPIO E, ERVASTI S, PAAVOLA T, et al. Use of laboratory anaerobic digesters to simulate the increase of treatment rate in full-scale high nitrogen content sewage sludge and co-digestion biogas plants[J]. Bioresource Technology, 2016, 220: 47-54. |
23 | DHAR B R, ELBESHBISHY E, NAKHLA G. Influence of iron on sulfide inhibition in dark biohydrogen fermentation[J]. Bioresource Technology, 2012, 126: 123-130. |
24 | DALBY FREDERIK R, HANSEN M J, FEILBERG A. Application of proton-transfer-reaction mass spectrometry (PTR-MS) and 33S isotope labeling for monitoring sulfur processes in livestock waste[J]. Environmental Science & Technology, 2018, 52(4): 2100-2107. |
25 | XUE W Q, HAO T W, MACKEY H R, et al. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment[J]. Water Research, 2017, 124: 513-520. |
26 | LE D T H, NITISORAVUT R. Modified hydrotalcites for enhancement of biohydrogen production[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12169-12176. |
27 | LIN C. Heavy metal effects on fermentative hydrogen production using natural mixed microflora[J]. International Journal of Hydrogen Energy, 2008, 33(2): 587-593. |
28 | ŚWIERCZEK L, CIEŚLIK B M, KONIECZKA P. The potential of raw sewage sludge in construction industry-a review[J]. Journal of Cleaner Production, 2018, 200: 342-356. |
29 | YANG X, LI Q, TANG Z, et al. Heavy metal concentrations and arsenic speciation in animal manure composts in China[J]. Waste Management, 2017, 64: 333-339. |
30 | ZUMAR BUNDHOO M A, MOHEE R. Inhibition of dark fermentative bio-hydrogen production: a review[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6713-6733. |
31 | RAFIEENIA R, PIVATO A, LAVAGNOLO M C. Effect of inoculum pre-treatment on mesophilic hydrogen and methane production from food waste using two-stage anaerobic digestion[J]. International Journal of Hydrogen Energy, 2018, 43(27): 12013-12022. |
32 | STABNIKOVA O, ANG S S, LIU X Y, et al. The use of hybrid anaerobic solid-liquid (HASL) system for the treatment of lipid-containing food waste[J]. Chemical Technology and Biotechnology, 2005, 80(4): 455-461. |
33 | WU L J, KOBAYASHI T, LI Y Y, et al. Comparison of single-stage and temperature-phased two-stage anaerobic digestion of oily food waste[J]. Energy Conversion and Management, 2015, 106: 1174-1182. |
34 | ABREU A A, TAVARES F, ALVES M M, et al. Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process[J]. Bioresource Technology, 2019, 278: 180-186. |
35 | 王晓, 严媛媛, 张萍, 等. 新兴污染物对污泥厌氧发酵的影响及其厌氧降解研究进展[J]. 化工进展, 2014, 33(12): 3379-3386. |
WANG Xiao, YAN Yuanyuan, ZHANG Ping, et al. Research progress of effect of emerging contaminants on sludge anaerobic fermentation and their anaerobic degradation[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3379-3386. | |
36 | 王怡琴, 谢学辉, 郑秀林, 等. 激活剂促进微生物降解偶氮、蒽醌和三苯甲烷类染料研究进展[J]. 化工进展, 2019, 38(6): 2968-2976. |
WANG Yiqin, XIE Xuehui, ZHENG Xiulin, et al. Advances in research on activators promoting microbial degradation of dyes[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2968-2976. | |
37 | 刘娜, 谢学辉, 柳建设. 印染废水水解酸化作用及其调控研究进展[J]. 化工进展, 2014, 33(10): 2758-2763. |
LIU Na, XIE Xuehui, LIU Jianshe, et al. Functions and regulations of hydrolytic acidification in dyeing wastewater treatment:a review[J]. Chemical Industry and Engineering Progress, 2014, 33(10): 2758-2763. | |
38 | DESSÌ P, PORCA E, FRUNZO L, et al. Inoculum pretreatment differentially affects the active microbial community performing mesophilic and thermophilic dark fermentation of xylose[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9233-9245. |
39 | SAWATDEENARUNAT C, SURENDRA K C, TAKARA D, et al. Anaerobic digestion of lignocellulosic biomass: challenges and opportunities[J]. Bioresource Technology, 2015, 178: 178-186. |
40 | GÓMEZ-QUIROGA X, ABOUDI K, ÁLVAREZ-GALLEGO C J, et al. Enhancement of methane production in thermophilic anaerobic co-digestion of exhausted sugar beet pulp and pig manure[J]. Applied Sciences, 2019, 9(9): 1791. |
41 | RAJESH B J, KAVITHA S, YUKESH K R, et al. Industrial wastewater to biohydrogen: possibilities towards successful biorefinery route[J]. Bioresource Technology, 2020, 298: 122378. |
42 | 杨茜, 鞠美庭, 李维尊. 秸秆厌氧消化产甲烷的研究进展[J]. 农业工程学报, 2016, 32(14): 232-242. |
YANG Qian, JU Meiting, LI Weizun. Research progress of anaerobic digestion of methane from rice straw[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14):232-242. | |
43 | LIU X, LI R, JI M. Effects of two-stage operation on stability and efficiency in co-digestion of food waste and waste activated sludge[J]. Energies, 2019, 12(14): 2748. |
44 | NAM J, KIM D, KIM S, et al. Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode[J]. Environmental Science and Pollution Research, 2016, 23(8): 7155-7161. |
45 | BALDI F, PECORINI I, IANNELLI R. Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production[J]. Renewable Energy, 2019, 143: 1755-1765. |
46 | 宋梓梅. 鸡粪与果蔬废弃物混合厌氧制氢特性研究[D]. 杨凌: 西北农林科技大学, 2018. |
SONG Zimei. Study on characteristics of hydrogen production from anaerobic co-fermentation of chicken manure whit fruit and vegetable wastes[D]. Yangling: Northwest A&F University, 2018. | |
47 | SAAD M F MAT, ABDUL RAHMAN N A, MOHD YUSOFF M Z. Hydrogen and methane productionfrom co-digestion of food wasteand chicken manure[J]. Polish Journal of Environmental Studies, 2019, 28(4): 2805-2814. |
48 | TUAN Y T R, ABDUL R N A, ARIFF A, et al. Evaluation of hydrogen and methane productionfrom co-digestion of chicken manureand food waste[J]. Polish Journal of Environmental Studies, 2019, 28(4): 3003-3014. |
49 | HAN W, LIU D N, SHI Y W, et al. Biohydrogen production from food waste hydrolysate using continuous mixed immobilized sludge reactors[J]. Bioresource Technology, 2015, 180: 54-58. |
50 | SAADY N M C. Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge[J]. International Journal of Hydrogen Energy, 2013, 38(30): 13172-13191. |
51 | WU L, QIN Y, HOJO T, et al. Upgrading of anaerobic digestion of waste activated sludge by temperature-phased process with recycle[J]. Energy, 2015, 87: 381-389. |
52 | ZÁBRANSKÁ J, ŠTĚPOVÁ J, WACHTL R, et al. The activity of anaerobic biomass in thermophilic and mesophilic digesters at different loading rates[J]. Water Science and Technology, 2000, 42(9): 49-56. |
53 | ARSLAN C, SATTAR A, JI C, et al. Optimizing the impact of temperature on bio-hydrogen production from food waste and its derivatives under no pH control using statistical modelling[J]. Biogeosciences, 2015, 12(21): 6503-6514. |
54 | 刘頔. 秸秆与污泥混合两相发酵产氢产甲烷的研究[D]. 天津: 天津大学, 2012. |
LIU Di. Hydrogen and methane production by co-digestion of cornstalk and sewage sludge in the two-stage fermentation process[D]. Tianjin: Tianjin University, 2012. | |
55 | GUO X M, TRABLY E, LATRILLE E, et al. Hydrogen production from agricultural waste by dark fermentation: a review[J]. International Journal of Hydrogen Energy, 2010, 35(19): 10660-10673. |
56 | ROMÃO B B, BATISTA F R X, FERREIRA J S, et al. Biohydrogen production through dark fermentation by a microbial consortium using whey permeate as substrate[J]. Applied Biochemistry and Biotechnology, 2014, 172(7): 3670-3685. |
57 | ZHONG J, STEVENS D K, HANSEN C L. Optimization of anaerobic hydrogen and methane production from dairy processing waste using a two-stage digestion in induced bed reactors (IBR)[J]. International Journal of Hydrogen Energy, 2015, 40(45): 15470-15476. |
58 | JAMIL Z, YUNUS N A M, MOHAMADANNUAR M S, et al. Anaerobic co-digestion of food waste for biohydrogen production[C]//Business Engineering and Industrial Applications Colloquium (BEIAC), Langkawi Malaysia, 2013. |
59 | ROBLEDO-NARVÁEZ P N, MUÑOZ-PÁEZ K M, POGGI-VARALDO H M, et al. The influence of total solids content and initial pH on batch biohydrogen production by solid substrate fermentation of agroindustrial wastes[J]. Journal of Environmental Management, 2013, 128: 126-137. |
60 | MOTTE J C, TRABLY E, ESCUDIÉ R, et al. Total solids content: a key parameter of metabolic pathways in dry anaerobic digestion[J]. Biotechnology for Biofuels, 2013, 6(1): 164. |
61 | GHIMIRE A, TRABLY E, FRUNZO L, et al. Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass[J]. Bioresource Technology, 2018, 248: 180-186. |
62 | CHOU C, WANG C, HUANG C, et al. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen[J]. International Journal of Hydrogen Energy, 2008, 33(5): 1550-1558. |
63 | LALIT B V, VENKATA M S, SARMA P N. Influence of reactor configuration on fermentative hydrogen production during wastewater treatment[J]. International Journal of Hydrogen Energy, 2009, 34(8): 3305-3312. |
64 | CASTELLÓ E, NUNES FERRAZ-JUNIOR A D, ANDREANI C, et al. Stability problems in the hydrogen production by dark fermentation: possible causes and solutions[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109602. |
65 | GAVALA H, SKIADAS I, AHRING B. Biological hydrogen production in suspended and attached growth anaerobic reactor systems[J]. International Journal of Hydrogen Energy, 2006, 31(9): 1164-1175. |
66 | JUNG K, KIM D, SHIN H. A simple method to reduce the start-up period in a H2-producing UASB reactor[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1466-1473. |
67 | LI Z, CHEN Z, YE H, et al. Anaerobic co-digestion of sewage sludge and food waste for hydrogen and VFA production with microbial community analysis[J]. Waste Management, 2018, 78: 789-799. |
68 | ANBURAJAN P, PARK J, PUGAZHENDHI A, et al. Biohydrogen production from glucose using submerged dynamic filtration module: metabolic product distribution and flux-based analysis[J]. Bioresource Technology, 2019, 287: 121445. |
69 | DE G G, MUNTONI A, POLETTINI A, et al. A review of dark fermentative hydrogen production from biodegradable municipal waste fractions[J]. Waste Management, 2013, 33(6): 1345-1361. |
70 | XIAO B, LIU J. Effects of various pretreatments on biohydrogen production from sewage sludge[J]. Science Bulletin, 2009, 54(12): 2038-2044. |
71 | WANG J, YIN Y. Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures[J]. International Journal of Hydrogen Energy, 2017, 42(8): 4804-4823. |
72 | WANG Y, AI P, HU C, et al. Effects of various pretreatment methods of anaerobic mixed microflora on biohydrogen production and the fermentation pathway of glucose[J]. International Journal of Hydrogen Energy, 2011, 36(1): 390-396. |
73 | CUI M, SHEN J. Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation[J]. International Journal of Hydrogen Energy, 2012, 37(1): 1120-1124. |
74 | HU B, CHEN S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation[J]. International Journal of Hydrogen Energy, 2007, 32(15): 3266-3273. |
75 | KARADAG D, PUHAKKA J A. Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor[J]. International Journal of Hydrogen Energy, 2010, 35(20): 10954-10959. |
76 | SELBY K, MASCHER G, SOMERVUO P, et al. Heat shock and prolonged heat stress attenuate neurotoxin and sporulation gene expression in group I Clostridium botulinum strain ATCC 3502[J]. PloS One, 2017, 12(5): e176944. |
77 | COMMEAU N, JALOUSTRE S. Impact of temperature sampling strategy on the risk of Clostridium growth: application to rapid cooling of food in institutional food service facilities[J]. Food Control, 2013, 30(2): 642-648. |
78 | NIZ M Y K, ETCHELET I, FUENTES L, et al. Extreme thermophilic condition: an alternative for long-term biohydrogen production from sugarcane vinasse[J]. International Journal of Hydrogen Energy, 2019, 44(41): 22876-22887. |
79 | ZHANG C, LYU F, XING X. Bioengineering of the Enterobacter aerogenes strain for biohydrogen production[J]. Bioresource Technology, 2011, 102(18): 8344-8349. |
80 | SINGH S, SARMA P M, LAL B. Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum TERI S7 from oil reservoir flow pipeline[J]. International Journal of Hydrogen Energy, 2014, 39(9): 4206-4214. |
81 | RATTI R P, DELFORNO T P, OKADA D Y, et al. Bacterial communities in thermophilic H2-producing reactors investigated using 16S rRNA 454 pyrosequencing[J]. Microbiological Research, 2015, 173: 10-17. |
82 | SINHA P, PANDEY A. Biohydrogen production from various feedstocks by Bacillus firmus NMBL-03[J]. International Journal of Hydrogen Energy, 2014, 39(14): 7518-7525. |
83 | VALDEZ-VAZQUEZ I, PÉREZ-RANGEL M, TAPIA A, et al. Hydrogen and butanol production from native wheat straw by synthetic microbial consortia integrated by species of Enterococcus and Clostridium[J]. Fuel, 2015, 159: 214-222. |
84 | LEE D, SHOW K, SU A. Dark fermentation on biohydrogen production: pure culture[J]. Bioresource Technology, 2011, 102(18): 8393-8402. |
85 | ZAHEDI S, SOLERA R, MICOLUCCI F, et al. Changes in microbial community during hydrogen and methane production in two-stage thermophilic anaerobic co-digestion process from biowaste[J]. Waste Management, 2016, 49: 40-46. |
86 | JIA X, WANG Y, REN L, et al. Early warning indicators and microbial community dynamics during unstable stages of continuous hydrogen production from food wastes by thermophilic dark fermentation[J]. International Journal of Hydrogen Energy, 2019, 44(57): 30000-30013. |
87 | JO J H, JEON C O, LEE D S, et al. Process stability and microbial community structure in anaerobic hydrogen-producing microflora from food waste containing kimchi[J]. Journal of Biotechnology, 2007, 131(3): 300-308. |
[1] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[2] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[3] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
[4] | 高宁博, 胡雅迪, 全翠. 餐厨垃圾的热转化和生物处理研究进展[J]. 化工进展, 2022, 41(S1): 507-515. |
[5] | 余正伟, 张晓霞, 雷杰, 李澳, 王光应, 丁祥, 龙红明. 废CeO x -MnO x 基SCR脱硝催化剂还原酸浸综合回收铈锰[J]. 化工进展, 2022, 41(9): 5122-5131. |
[6] | 季炫宇, 林伟坚, 周雄, 柏继松, 杨宇, 孔杰, 廖重阳. 废轮胎热裂解技术研究现状与进展[J]. 化工进展, 2022, 41(8): 4498-4512. |
[7] | 蔡思超, 周静, 杜金泽, 李方舟, 李源森, 何林, 李鑫钢, 王成扬. 煤化工酚基精馏釜残资源化利用过程初步分析[J]. 化工进展, 2022, 41(6): 3360-3371. |
[8] | 刘洋, 叶小梅, 王成成, 贾昭炎, 杜静, 孔祥平, 奚永兰. 农村有机生活垃圾与不同原料厌氧共发酵工艺优化[J]. 化工进展, 2022, 41(5): 2770-2777. |
[9] | 王建斌, 陈云, 王可华, 于学鹏, 陈聪, 刘建忠. 工业窑炉协同处置固废研究进展[J]. 化工进展, 2022, 41(3): 1494-1502. |
[10] | 相宏伟, 杨勇, 李永旺. 碳中和目标下的煤化工变革与发展[J]. 化工进展, 2022, 41(3): 1399-1408. |
[11] | 聂紫萌, 杨点, 熊玉路, 李英杰, 田森林, 宁平. 电解锰渣浆液烟气脱硫性能及机制[J]. 化工进展, 2022, 41(2): 1063-1072. |
[12] | 李昊阳, 张炜, 李小森, 徐纯刚. 水合物储氢的研究进展[J]. 化工进展, 2022, 41(12): 6285-6294. |
[13] | 刘安仓, 陈川, 陈建忠, 陈裕忠, 朱晨亮, 江永, 鲁福身, 王双喜, 钟子宜, 宋一兵. 催化反应技术在滨海电厂的CO2资源化利用和海洋防污领域的应用[J]. 化工进展, 2021, 40(9): 5145-5155. |
[14] | 姜亚光, 王瑞康, 王倩, 李春喜. 以三氯乙烯为供氢剂将四氯化碳转化为氯仿[J]. 化工进展, 2021, 40(2): 1114-1121. |
[15] | 方书起,崔俊乐,史兆臣,白净,常春,李攀. 医疗固体废弃物热解及其产物特性分析[J]. 化工进展, 2019, 38(12): 5587-5593. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |