1 | GONCALVES R V, WOJCIESZAK R, WENDER H, et al. Easy access to metallic copper nanoparticles with high activity and stability for CO oxidation[J]. ACS Appl. Mater. Interfaces, 2015, 7(15): 7987-7994. | 2 | STONE F S, WALLER D. Cu-ZnO and Cu-ZnO/Al2O3 catalysts for the reverse water-gas shift reaction. The effect of the Cu/Zn ratio on precursor characteristics and on the activity of the derived catalysts[J]. Top. Catal., 2003, 22(3/4): 305-318. | 3 | BEHRENS M. Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts[J]. J. Catal., 2009, 267(1): 24-29. | 4 | ZANDER S, KUNKES E L, SCHUSTER M E, et al. The role of the oxide component in the development of copper composite catalysts for methanol synthesis[J]. Angew. Chem. Int. Ed., 2013, 52(25): 6536-6540. | 5 | SMITH P J, KONDRAT S A, CHATER P A, et al. A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by coprecipitation[J]. Chem. Sci., 2017, 8(3): 2436-2447. | 6 | LIU Q, WANG L, CHEN M, et al. Waste-free soft reactive grinding synthesis of high-surface-area copper-manganese spinel oxide catalysts highly effective for methanol steam reforming[J]. Catal. Lett., 2008, 121(1/2): 144-150. | 7 | KASATKIN I, KURR P, KNIEP B, et al. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis[J]. Angew. Chem. Int. Ed., 2007, 46(38): 7324-7327. | 8 | BEHRENS M, GIRGSDIES F, TRUNSCHKE A, et al. Minerals as model compounds for Cu/ZnO catalyst precursors: structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture[J]. Eur. J. Inorg. Chem, 2009(10): 1347-1357. | 9 | BEHRENS M, GIRGSDIES F. Structural effects of Cu/Zn substitution in the malachite-rosasite system[J]. Z. Anorg. Allg. Chem., 2010, 636(6): 919-927. | 10 | JIANG X, QIN X F, LING C, et al. The effect of mixing on co-precipitation and evolution of microstructure of Cu-ZnO catalyst[J]. AIChE J., 2018, 64(7): 2647-2654. | 11 | 凌晨, 蒋新, 汪志勇, 等. 微反应器中的混合对Cu-ZnO催化剂微结构形成过程的影响[J]. 化工学报, 2018, 69(2): 718-726. | 11 | LING Chen, JIANG Xin, WANG Zhiyong, et al. Influence of mixing inside microreactor on microstructural evolution of CU-ZnO catalyst[J]. CIESC J., 2018, 69(2): 718-726. | 12 | 陈玉萍, 蒋新, 卢建刚. 微通道反应过程对铜锌催化剂微结构的影响[J]. 化工学报, 2015, 66(10): 3895-3902. | 12 | CHEN Yuping, JIANG Xin, LU Jiangang. Effects of reaction progress in microchannel on microstructure of Cu-Zn catalyst[J]. CIESC J., 2015, 66(10): 3895-3902. | 13 | PORTA P, MORETTI G, JACONO M L, et al. Characterization of copper-manganese hydroxysalts and oxysalts[J]. J. Mater. Chem., 1991, 1(1): 129-135. | 14 | WANG Z X, ZHU J L, SUN P, et al. Nanostructured Mn-Cu binary oxides for supercapacitor[J]. J. Alloys Compd., 2014, 598: 166-170. | 15 | QIAN K, QIAN Z X, QING H, et al. Structure-activity relationship of CuO/MnO2 catalysts in CO oxidation[J]. Appl. Surf. Sci., 2013, 273: 357-363. | 16 | LIU Y, JIA L, LIN Y, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. J. Chem. Eng. Jpn., 2018, 51(9): 769-777. | 17 | PIERO P, GIULIANO M, MONICA M, et al. Copper-manganese mixed oxides: formation, characterization and reactivity under different conditions[J]. Solid State Ionics, 1993, 63/64/65: 257-267. | 18 | BEMS B, SCHUR M, DASSENOY A, et al. Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates[J]. Chem. Eur. J., 2003, 9(9): 2039-2052. | 19 | MILLAR G J, HOLM I H, UWINS P R, et al. Characterization of precursors to methanol synthesis catalysts Cu/ZnO system[J]. J. Chem. Soc., Faraday Trans, 1998, 94(4): 593-600. | 20 | 刘兆信, 黎维彬. 在类棒状铜锰复合氧化物上甲苯的催化燃烧活性及其失活[J]. 物理化学学报, 2016, 32(7): 1795-1800. | 20 | LIU Zhaoxin, LI Weibin. Catalytic activity and deactivation of toluene combustion on rod-like copper-manganese mixed oxides[J]. Acta Phys. Chim. Sin., 2016, 32(7): 1795-1800. | 21 | BUCIUMAN F C, PATCAS F, HAHN T. A spillover approach to oxidation catalysis over copper and manganese mixed oxides[J]. Chem. Eng. Process, 1999, 38(4/6): 563-569. | 22 | EINAGA H, KIYA A, YOSHIOKA S, et al. Catalytic properties of copper-manganese mixed oxides prepared by coprecipitation using tetramethylammonium hydroxide[J]. Catal. Sci. Technol., 2014, 4(10): 3713-3722. | 23 | CLARKE T J, KONDRAT S A, TAYLOR S H. Total oxidation of naphthalene using copper manganese oxide catalysts[J]. Catal. Today, 2015, 258: 610-615. | 24 | STOBBE E R, DE BOER B A, GEUS J W. The reduction and oxidation behaviour of manganese oxides[J]. Catal. Today, 1999, 47(1/4): 161-167. | 25 | HOSSEINI S A, NIAEI A, SALARI D, et al. Study of correlation between activity and structural properties of Cu-(Cr, Mn and Co)2 nano mixed oxides in VOC combustion[J]. Ceram. Int., 2014, 40(4): 6157-6163. | 26 | CAO H Y, LI X S, CHEN Y Q, et al. Effect of loading content of copper oxides on performance of Mn-Cu mixed oxide catalysts for catalytic combustion of benzene[J]. J. Rare Earths, 2012, 30(9): 871-877. | 27 | 顾欧昀, 廖永涛, 陈锐杰, 等. 铜锰复合氧化物催化剂上甲苯的催化燃烧[J]. 化工学报, 2016, 67(7): 2832-2840. | 27 | GU Ouyun, LIAO Yongtao, CHEN Ruijie, et al. Catalytic combustion of toluene over Cu-Mn mixed oxide catalyst[J]. CIESC J., 2016, 67(7): 2832-2840. | 28 | 黎维彬, 龚浩. 催化燃烧去除VOCs 污染物的最新进展[J]. 物理化学学报, 2010, 26(4): 885-894. | 28 | LI Weibin, GONG Hao. Recent progress in the removal of volatile organic compounds by catalytic combustion[J]. Acta Phys. Chim. Sin., 2010, 26(4): 885-894. | 29 | YE Z, GIRAUDON J M, NUNS N, et al. Influence of the preparation method on the activity of copper-manganese oxides for toluene total oxidation[J]. Appl. Catal. B, 2018, 223: 154-166. |
|