1 |
ZEVENHOVEN R , BEYENE A . The relative contribution of waste heat from power plants to global warming[J]. Energy, 2011, 36(6): 3754-3762.
|
2 |
TCHANCHE B F , LAMBRINOS G , FRANGOUDAKIS A , et al . Low-grade heat conversion into power using organic rankine cycles—a review of various applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963-3979.
|
3 |
THEKDI A , NIMBALKAR S U . Industrial waste heat recovery—potential applications , available technologies and crosscutting R&D opportunities[R]. Tennessee:Oak Ridge National Laboratory, 2014:5-20.
|
4 |
刘茜, 李华山, 卜宪标, 等 . 太阳能有机朗肯-闪蒸循环工质选择[J]. 化工进展, 2018, 37(5): 1781-1788.
|
|
LIU Xi , LI Huashan , BU Xianbiao , et al . Working fluid selection for solar binary-flashing cycle[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1781-1788.
|
5 |
韩中合, 许鸿胜, 范伟, 等 . 低温烟气有机郎肯循环系统热力性能与经济性的对比分析[J]. 化工进展, 2017, 36(11): 4010-4016.
|
|
HAN Zhonghe , XU Hongsheng , FAN Wei , et al . Comparison of thermodynamic performance and economic efficiency of ORC system for low temperature flue gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4010-4016.
|
6 |
CARATI A , MARINO M , BROGIOLI D . Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources[J]. Energy, 2015, 93: 984-993.
|
7 |
HU J , XU S , WU X , et al . Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation-reverse electrodialysis power generation system[J]. Desalination, 2018, 443: 172-183.
|
8 |
吴曦, 徐士鸣, 吴德兵, 等 . 逆电渗析法热-电转换系统循环工质匹配准则[J]. 化工学报, 2016, 67(s2): 326-332.
|
|
WU Xi , XU Shiming , WU Debing , et al . Methodology of assessing working mediums availability for anovel heat-power conversion system with reverse electrodialysis technology[J]. CIESC Journal, 2016, 67(s2): 326-332.
|
9 |
徐士鸣, 吴曦, 吴德兵 . 一种新型低品位热能发电方法及装置: CN105261808A[P]. 2016-01-20.
|
|
XU Shiming , WU Xi , WU Debing . A new method of conversing low grade temperature heat to power:CN201510694726.4[P]. 2016-01-20.
|
10 |
KIM D D H, PARK B H , KWON K , et al . Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery[J]. Applied Energy, 2017, 189: 201-210.
|
11 |
徐士鸣, 吴德兵, 吴曦, 等 . 氯化锂溶液为工质的溶液浓差发电实验研究[J]. 大连理工大学学报, 2017, 57(4): 337-344.
|
|
XU Shiming , WU Debing , WU Xi , et al . Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J]. Journal of Dalian University of Technology, 2017, 57(4): 337-344.
|
12 |
徐士鸣,徐志杰,吴曦, 等 . 溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J]. 环境科学学报, 2018,38(12):4642-4651.
|
|
XU Shiming , XU Zhijie , WU Xi , et al . Study on the mechanism of organic wastewater oxidation degradation with reverse electrodialysis powered by concentration difference energy[J].Acta Scientiae Circumstantiae, 2018,38(12):4642-4651.
|
13 |
田中良修 . 离子交换膜:基本原理及应用[M]. 葛道才,任庆春,译. 北京:化学工业出版社,2010:34-43.
|
|
TANAKA Y . Ion exchange membranes: fundamentals and applications[M]. GE D C, REN Q C, trans.Beijing:Chemical Industry Press, 2010:34-43.
|
14 |
VEERMAN J , SAAKES M , METZ S J , et al . Reverse electrodialysis: evaluation of suitable electrode systems[J]. Journal of Applied Electrochemistry, 2010, 40(8): 1461-1474.
|
15 |
PATTLE R E . Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660.
|
16 |
TEDESCO M , CIPOLLINA A , TAMBURINI A , et al . Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J]. Journal of Membrane Science, 2017, 522: 226-236.
|
17 |
VEERMAN J , SAAKES M , METZ S J , et al . Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1/2): 136-144.
|
18 |
TEDESCO M , BRAUNS E , CIPOLLINA A , et al . Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492: 9-20.
|
19 |
TEDESCO M , SCALICI C , VACCARI D , et al . Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines[J]. Journal of Membrane Science, 2016, 500: 33-45.
|
20 |
VERMAAS D A , SAAKES M , NIJMEIJER K . Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science & Technology, 2011, 45(16): 7089-7095.
|
21 |
ZHU X , HE W , LOGAN B E . Influence of solution concentration and salt types on the performance of reverse electrodialysis cells[J]. Journal of Membrane Science, 2015, 494: 154-160.
|
22 |
POST J W , HAMELERS H V M , BUISMAN C J N . Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42(15): 5785-5790.
|
23 |
KIM H K, LEE M S, LEE S Y, et al . High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer[J]. J. Mater. Chem. A , 2015, 3(31): 16302-16306.
|
24 |
PITZER K S , MAYORGA G . Thermodynamics of electrolytesII. activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308.
|
25 |
FONTANANOVA E , MESSANA D , TUFA R A , et al . Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion[J]. Journal Power Sources, 2017, 340: 282-293.
|
26 |
GALAMA A H , VERMAAS D A , VEERMAN J , et al . Membrane resistance: the effect of salinity gradients over a cation exchange membrane[J]. Journal of Membrane Science, 2014, 467: 279-291.
|
27 |
GALAMA A H , HOOG N A , YNTEMA D R . Method for determining ion exchange membrane resistance for electrodialysis systems[J]. Desalination, 2016, 380: 1-11.
|
28 |
VERMAAS D A , GULER E , SAAKES M , et al . Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20: 170-184.
|
29 |
BRAUNS E . Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output[J]. Desalination, 2009, 237(1/2/3): 378-391.
|