[1] LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science and Technology, 2004, 38(14):4040-4046.
[2] HEIDEBRECHT P, SUNDMACHER K. Molten carbonate fuel cell (MCFC) with internal reforming:model-based analysis of cell dynamics[J]. Chemical Engineering Science, 2003, 58(3/4/5/6):1029-1036.
[3] STAMBOULI AB, TTAVERSA E. Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy[J]. Renewable and Sustainable Energy Reviews, 2002, 6(5):433-455.
[4] SAMMES N, BOVE R, STAHL K. Phosphoric acid fuel cells:fundamentals and applications[J]. Current Opinion in Solid State and Materials Science, 2004, 8(5):372-378.
[5] 冯梦南.生物质燃料电池的研制[D]. 天津:天津大学, 2012. FENG Mengnan. Construction of biomass fuel cell[D]. Tianjin:Tianjin University, 2012.
[6] 刘海音, 魏家巍, 辛树全, 等.嵌段型碱性燃料电池用阴离子交换膜的制备与表征[J]. 长春师范大学学报, 2017, 36(4):47-49. LIU Haiyin, WEI Jiawei, XIN Shuquan, et al. Preparation and characterization of block anion exchange membrane for alkaline fuel cell[J].Journal of Changchun Normal University, 2017, 36(4):47-49.
[7] FUJIWARA N, YAMAZAKI S, SIROMA Z, et al. Nonenzymatic glucose fuel cells with an anion exchange membrane as an electrolyte[J]. Electrochemistry Communications, 2009, 11(2):390-392.
[8] AN L, ZHAO T S, SHEN S Y, et al. Alkaline direct oxidation fuel cell with non-platinum catalysts capable of converting glucose to electricity at high power output[J]. Journal of Power Sources, 2011, 196(1):186-190.
[9] CHEN J, ZHENG H, KANG J, et al. An alkaline direct oxidation glucose fuel cell using three-dimensional structural Au/Ni-foam as catalytic electrodes[J]. RSC Advances, 2017, 7(5):3035-3042.
[10] SUGANO Y, VESTERGAAED M, YOSHIKAWA H, et al. Direct electrochemical oxidation of cellulose:a cellulose-based fuel cell system[J]. Electroanalysis, 2010, 22(15):1688-1694.
[11] LIU S, LIU X, WANG Y, et al. Electricity generation from macroalgae Enteromorpha prolifera hydrolysates using an alkaline fuel cell[J]. Bioresource Technology, 2016, 222:226-231.
[12] BASU D, BASU S. Synthesis, characterization and application of platinum based bi-metallic catalysts for direct glucose alkaline fuel cell[J]. Electrochimica Acta, 2011, 56(17):6106-6113.
[13] 冯梦南, 刘宪华.一种直接葡萄糖-空气碱性燃料电池的构建和表征[J].电源技术, 2012, 36(9):1291-1294. FENG Mengnan, LIU Xianhua. Construction and characterization of a direct glucose-air alkaline fuel cell[J]. Chinese Journal of Power Sources, 2012, 36(9):1291-1294.
[14] LI L, SCOTT K, YU E H. A direct glucose alkaline fuel cell using MnO2-carbon nanocomposite supported gold catalyst for anode glucose oxidation[J]. Journal of Power Sources, 2013, 221:1-5.
[15] CHEN J, ZHAO C X, ZHI M M, et al. Alkaline direct oxidation glucose fuel cell system using silver/nickel foams as electrodes[J]. Electrochimica Acta, 2012, 66:133-138.
[16] 宋秉烨, 李印实, 杨卫卫, 等.自呼吸式碱性直接葡萄糖燃料电池研究[J].工程热物理学报, 2015, 36(3):568-571. SONG Bingye, LI Yinshi, YANG Weiwei, et al. Performance characterization of air-breathing anion-exchange membrane direct glucose fuel cells[J]. Journal of Engineering Thermophysics, 2015, 36(3):568-571.
[17] FATIH K, WILKINSON DP, MORAW F, et al. Advancements in the direct hydrogen redox fuel cell[J]. Electrochemical and Solid State Letters, 2008, 11(2):B11-B15.
[18] ILLICIC A, WILKINSON D P, FATIH K, et al. High fuel concentration direct liquid fuel cell with redox couple cathode[J]. ECS Transactions, 2008, 155(12):B1322-B1327.
[19] LIU W, MU W, LIU M, et al. Solar-induced direct biomassto-electricity hybrid fuel cell using polyoxometalates as photocatalyst and charge carrier[J]. Nature Communications, 2014, 5:3208.
[20] LIU W, MU W, DENG Y. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion[J]. Angewandte Chemie:International Edition, 2014, 53(49):13558-13562.
[21] GONG J, LIU W, DU X, et al. Direct conversion of wheat straw into electricity with a biomass flow fuel cell mediated by two redox ion pairs[J]. ChemSusChem, 2017, 10(3):506-513.
[22] 徐帆.利用有机废弃物产电的液相催化燃料电池系统[D].北京:清华大学, 2017. XU Fan. Liquid-catalyst fuel cell using biomass waste as fuel[D]. Beijing:Tsinghua University, 2017.
[23] 孙世刚, 陈胜利.电催化[M].北京:化学工业出版社, 2013. SUN Shigang, CHEN Shengli. Electrocatalysis[M]. Beijing:Chemical Industry Press, 2013.
[24] 陆天虹. 能源电化学[M]. 北京:化学工业出版社, 2014. LU Tianhong. Electrochemical energy[M]. Beijing:Chemical Industry Press, 2014.
[25] YU E H, WANG X, KREWER U, et al. Direct oxidation alkaline fuel cells:from materials to systems[J]. Energy & Environmental Science, 2012, 5(2):5668-5680.
[26] WU W, LIU W, MU W, et al. Polyoxymetalate liquid-catalyzed polyol fuel cell and the related photoelectrochemical reaction mechanism study[J]. Journal of Power Sources, 2016, 318:86-92.
[27] XU C, TIAN Z, SHEN P, et al. Oxide (CeO2, NiO, Co3O4, and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media[J]. Electrochimica Acta, 2008, 53(5):2610-2618.
[28] SHIMIZU K, FURUKAWA H, KOBAYASHI N, et al. Effects of Bronsted and Lewis acidities on activity and selectivity of heteropolyacid-based catalysts for hydrolysis of cellobiose and cellulose[J]. Green Chemistry, 2009, 11(10):1627-1632.
[29] DING Y, DU B, ZHAO X, et al. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw[J]. Bioresource Technology, 2017, 228:279.
[30] ZHANG Z, LIU J, GU J, et al. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2014, 7(8):2535-2558.
[31] SHEN P K, XU C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts[J]. Electrochemistry Communications, 2006, 8(1):184-188.
[32] MA J, SAHAI Y, BUCHHEIT R G. Direct borohydride fuel cell using Ni-based composite anodes[J]. Journal of Power Sources, 2010, 195(15):4709-4713.
[33] HAO M, LIU X, FENG M, et al. Generating power from cellulose in an alkaline fuel cell enhanced by methyl viologen as an electrontransfer catalyst[J]. Journal of Power Sources, 2014, 251(2):222-228.
[34] HORIGOME M, KOBAYASHI K, SUZUKI T M. Impregnation of metal carbides in Raney Ni-PTFE hydrogen electrodes[J]. International Journal of Hydrogen Energy, 2007, 32(3):365-370.
[35] MARTINEZ-HUERTA M V, ROJAS S, FUENTE J L G D L, et al. Effect of Ni addition over PtRu/C based electrocatalysts for fuel cell applications[J]. Applied Catalysis B:Environmental, 2006, 69(1):75-84.
[36] YAN W, WANG D, BOTTE G G. Electrochemical decomposition of urea with Ni-based catalysts[J]. Applied Catalysis B:Environmental, 2012, 127(3):221-226.
[37] HAMMOUCHE A, KAHOUL A, SAUER D U, et al. Influential factors on oxygen reduction at La1-xCaxCoO3 electrodes in alkaline electrolyte[J]. Journal of Power Sources, 2006, 153(2):239-244.
[38] RAGHUVEER V, VISWANATHAN B. Can La2-xSrxCuO4, be used as anodes for direct methanol fuel cells?[J]. Fuel, 2002, 81(17):2191-2197.
[39] YU H C, FUNG K Z, GUO T C, et al. Syntheses of perovskite oxides nanoparticles La1-xSrxMO3-δ (M=Co and Cu) as anode electrocatalyst for direct methanol fuel cell[J]. Electrochimica Acta, 2004, 50(2/3):811-816.
[40] SINGH R N, SHARMA T, SINGH A, et al. Perovskite-type LaxSr1-xNiO (0 ≤ x ≤ 1) as active anode materials for methanol oxidation in alkaline solutions[J]. Electrochimica Acta, 2008, 53(5):2322-2330.
[41] ZHAO Q, YAN Z, CHEN C, et al. Spinels:controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chemical Reviews, 2017, 15:10121-10211.
[42] XUE F, XIAO J, YANG S, et al. Investigation on microwave absorbing properties of loaded MnFe2O4 and degradation of Reactive Brilliant Red X-3B[J]. Applied Catalysis B:Environmental, 2015, 162:544-550.
[43] FENG J, SU L, MA Y, et al. CuFe2O4, magnetic nanoparticles:a simple and efficient catalyst for the reduction of nitrophenol[J]. Chemical Engineering Journal, 2013, 221(4):16-24.
[44] GOYAL A, BANSAL S, KUMAR V, et al. Mn substituted cobalt ferrites (CoMnxFe2-xO4, (x=0.0,0.2,0.4,0.6,0.8,1.0)):as magnetically separable heterogeneous nanocatalyst for the reduction of nitrophenols[J]. Applied Surface Science, 2015, 324(5):877-889.
[45] ZHANG Y, LUO L, ZHANG Z, et al. Synthesis of MnCo2O4 nanofibers by electrospinning and calcination:application for a highly sensitive non-enzymatic glucose sensor[J]. Journal of Materials Chemistry B, 2014, 2(5):529-535.
[46] HIDESHI Hattori, YOSHIO Ono. 固体酸催化[M]. 上海:复旦大学出版社, 2016. HIDESHI Hattori, YOSHIO Ono. Solid acid catalysis[M]. Shanghai:Fudan University Press, 2016.
[47] 王秀丽, 赵岷.多酸电化学导论[M].北京:中国环境科学出版社, 2006. WANG Xiuli, ZHAO Min. Introduction of polyacid electrochemistry[M]. Beijing:China Environmental Science Press. 2006.
[48] 陈维林, 王恩波.多酸化学[M].北京:科学出版社, 2016. CHEN Weilin, WANG Enbo. Polyacid chemistry[M]. Beijing:Science Press, 2016.
[49] ZHANG Z, LIU C, LIU W, et al. Direct conversion of sewage sludge to electricity using polyoxomatelate catalyzed flow fuel cell[J]. Energy, 2017, 141:1019-1026.
[50] ZHAO X, ZHU JY. Efficient conversion of lignin to electricity using a novel direct biomass fuel cell mediated by polyoxometalates at low temperatures[J]. ChemSusChem, 2016, 9(2):197.
[51] RAFIEE E, EAVANI S. Heterogenization of heteropoly compounds:a review of their structure and synthesis[J]. RSC Advances, 2016, 6(52):46433-46466.
[52] JI Yuanchun, HUANG Lujiang, HU Jun. Polyoxometalatefunctionalized nanocarbon materials for energy conversion, energy storage, and sensor systems[J]. Energy Environ. Sci., 2015, 8:776-789.
[53] LIN C G, HU J, SONG Y F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage, and sensor systems[J]. Advances in Inorganic Chemistry, 2017, 69:181-212.
[54] JAOUEN F, PROIETTI E, LEFEVRE M, et al. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells[J]. Energy & Environmental Science, 2010, 4(1):114-130.
[55] OTHMAN R, DICKS A L, ZHU Z. Non precious metal catalysts for the PEM fuel cell cathode[J]. International Journal of Hydrogen Energy, 2011, 37(1):357-372.
[56] WU G, ZELENAY P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028):443.
[57] SHEN P K, XIE F Y, MENG H. Preparation and characterization of tungsten carbides as alkaline fuel cell catalysts[J]. ECS Transactions, 2006, 1(32):22-30.
[58] HORIGOME M, KOBAYASHI K, SUZUKI T M. Impregnation of metal carbides in Raney Ni-PTFE hydrogen electrodes[J]. International Journal of Hydrogen Energy, 2007, 32(3):365-370.
[59] RYCHCIK M, SKYLLAS-KAZACOS M. Evaluation of electrode materials for vanadium redox cell[J]. Journal of Power Sources, 1987, 19(1):45-54.
[60] ZHONG S, PADESTE C, KAZACOS M, et al. Comparison of the physical, chemical and electrochemical properties of rayon-and polyacrylonitrile-based graphite felt electrodes[J]. Journal of Power Sources, 1993, 45(1):29-41.
[61] SUN B, SKYLLAS-KAZACOS M. Modification of graphite electrode materials for vanadium redox flow battery application——Ⅰ. Thermal treatment[J]. Electrochimica Acta, 1992, 37(7):1253-1260.
[62] SUN B, SKYLLAS-KAZACOS M. ChemInform abstract:chemical modification of graphite electrode materials for vanadium redox flow battery application. Part 2. Acid treatments[J]. Cheminform, 1992, 23(49):18-18.
[63] 刘素琴, 郭小义, 黄可龙, 等.钒电池电极材料聚丙烯腈石墨毡的研究[J].电池, 2005, 35(3):183-184. LIU S Q, GUO X Y, HUANG K L, et al. Studies on the electrode material PAN-graphite felt used in vanadium battery[J].Battery, 2005, 35(3):183-184.
[64] 钱鹏, 张华民, 陈剑, 等.全钒液流电池用电极及双极板研究进展[J].能源工程, 2007(1):7-11. QIAN Peng, ZHANG Huamin, CHEN Jian, et al. Progress on electrode and bipolar plate materials for vanadium redox flow batteries[J]. Energy Engineering, 2007(1):7-11.
[65] WIND J, SPÄH R, KAISER W, et al. Metallic bipolar plates for PEM fuel cells[J]. Journal of Power Sources, 2002, 105(2):256-260.
[66] WILSON M S, BUSICK D N. Composite bipolar plate for electrochemical cells:US 6248467 B1[P]. 2001-06-19.
[67] 邹彦文, 张杰, 贺俊, 等.质子交换膜燃料电池复合材料双极板的研究[J]. 新型炭材料, 2004, 19(4):303-308. ZOU Yanwen, ZHANG Jie, HE Jun, et al. Proton exchange membrane fuel cell composite bipolar plate[J]. New Carbon Materials, 2004, 19(4):303-308.
[68] 毛宗强.燃料电池[M].北京:化学工业出版社, 2005. MAO Zongqiang. Fuel cell[M]. Beijing:Chemical Industry Press, 2005.
[69] KIM H, KANG M S, DONG H L, et al. Proton exchange membranes with high cell performance based on Nafion/poly(p-phenylene vinylene) composite polymer electrolyte[J]. Journal of Membrane Science, 2007, 304(1):60-64.
[70] TANG H, PAN M, LU S, et al. One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells[J]. Chemical Communications, 2010, 46(24):4351-4353. |