化工进展 ›› 2018, Vol. 37 ›› Issue (09): 3346-3354.DOI: 10.16085/j.issn.1000-6613.2017-2282

• 能源加工与技术 • 上一篇    下一篇

直接利用生物质的化学燃料电池研究进展

刘跃岭, 景琦, 徐帆, 李欢   

  1. 清华大学深圳研究生院, 广东 深圳 518055
  • 收稿日期:2017-11-03 修回日期:2017-12-11 出版日期:2018-09-05 发布日期:2018-09-05
  • 通讯作者: 李欢,副教授,主要研究方向高固体厌氧消化和生物质燃料电池。
  • 作者简介:刘跃岭(1990-),男,硕士研究生。E-mail:thu_liuyl@qq.com。
  • 基金资助:
    国家自然科学基金项目(51478239)。

Research progress of chemical fuel cells by direct use of biomass

LIU Yueling, JING Qi, XU Fan, LI Huan   

  1. Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
  • Received:2017-11-03 Revised:2017-12-11 Online:2018-09-05 Published:2018-09-05

摘要: 近些年燃料电池技术有了长足的发展,利用燃料电池处理废弃生物质并产电是一种新型途径,可以达到废物处理、能源回收的目的。然而,受限于燃料种类、电池性能、产物分离等因素,传统的燃料电池难以直接用于处理废弃生物质。本文首先针对中低温燃料电池如碱性燃料电池、质子交换膜燃料电池的研究现状进行了综述,结果表明,碱性燃料电池在以小分子有机物作为燃料时性能良好,但是容易受到产物CO2酸化影响;液相催化燃料电池在催化剂耐受性、生物质处理、电池功率密度等方面表现出优异的性能。然后介绍了电催化剂如过渡金属氧化物、多酸等研究现状,此类催化剂具有较强的氧化性、布朗斯特酸性和路易斯酸性等,具有很强的催化分解生物质的能力,针对液相催化剂不易分离的局限,介绍了催化剂固载化、纳米复合材料等研究进展。之后介绍了电极材料和膜材料的研究进展,碳极板因其综合性能和成本成为当前的主流选择,全氟磺酸膜性能优异,成为实验探究应用的理想材料,同时对一些复合材料的研究现状进行了简要介绍。最后,对化学燃料电池应用于生物质处理的方向进行了展望,液相催化燃料电池综合性能突出,在可处理生物质种类、催化剂循环等问题进一步优化之后,有望成为一种废弃生物质处理的新途径。

关键词: 燃料电池, 生物质, 液相催化燃料电池, 催化剂, 质子交换膜

Abstract: In recent years, there is great progress in f uel cell technology. For example, it is a new way to deal with waste biomass and to produce electricity by using fuel cells, which can achieve both waste disposal and energy recovery. However, it is difficult for conventional fuel cells to deal with waste biomass directly, due to the limiting factors such as fuel type, cell performance, product separation, and so on. In this paper, the research status of low temperature fuel cells such as alkaline fuel cell and proton exchange membrane fuel cell is reviewed. The results show that alkaline fuel cell has good performance when small molecule organic matter is used as fuel, but it is easy to be affected by CO2. Liquid catalyst fuel cell show excellent performance in terms of catalyst resistance, biomass treatment, battery power density. Then the research status of electrocatalysts such as transition metal oxides and polyoxometalates, and the research progress of electrode materials and membrane materials were introduced. Such catalysts with strong oxidation, Bronsted acidity and Lewis acidity, have a strong ability to decompose biomass. In view of the limitation that liquid catalyst is not easy to be separated, the research on catalyst immobilization, nanocomposites and the like are introduced. Carbon plate has become the mainstream choice for electrode due to its comprehensive performance and cost. Perfluorosulfonic acid membrane has excellent performance and has become an ideal material for experimental exploration. At the same time, the research status of some composite materials is briefly introduced. Finally, it is also forecasted the use of chemical fuel cell in biomass treatment. The comprehensive performance of liquid catalyst fuel cells is prominent. After the issues of biomass types and catalyst circulation could be further optimized, it is expected to become a new approach for the disposal of waste biomass.

Key words: fuel cell, biomass, liquid catalyst fuel cell, catalyst, proton exchange membrane

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn