[1] LU W, WEI Z, GU Z Y, et al. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chemical Society Reviews, 2014, 43(16):5561-5593.
[2] SHIMIZU G K. Metal-organic frameworks:model, make, measure[J]. Nature Chemistry, 2010, 2(11):909-911.
[3] ROSSEINSKY M J. Metal-organic frameworks:enlightened pores[J]. Nature Material, 2010, 9(8):609-610.
[4] JANIAK C, VIETH J K. MOFs, MILs and more:concepts, properties and applications for porous coordination networks(PCNs)[J]. New Journal of Chemistry, 2010, 42(3):2366-2388.
[5] 刘淑芝,赵福临,郭齐,等.金属有机骨架MIL-101的合成、改性及在催化反应中的应用进展[J].化工进展, 2017, 36(3):918-925. LIU S Z, ZHAO F L, GUO Q, et al. Progress in synthesis, modification and catalytic application of metal-organic frameworks MIL-101[J]. Chemical Industry and Engineering Progress, 2017, 36(3):918-925.
[6] DEY C, KUNDU T, BISWAL B P, et al. Cheminform abstract:crystalline metal-organic frameworks(MOFs):synthesis, structure and function[J]. Acta Crystallographica, 2014, 70(1):3-10.
[7] 李小娟,何长发,黄斌,等.金属有机骨架材料吸附去除环境污染物的进展[J].化工进展, 2016, 35(2):586-594. LI X J, HE C F, HUANG B, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J]. Chemical Industry and Engineering Progress, 2016, 35(2):586-594.
[8] 杨江峰,欧阳坤,陈杨,等.柔性MOFs材料Cu(BDC)的氨气吸附及可逆转化性能[J].化工学报, 2017, 68(1):418-423. YANG J F, OUYANG K, CHEN Y, et al. NH3 adsorption on flexy reversible metal-organic frameworks Cu(BDC)[J]. CIESC Journal, 2017, 68(1):418-423.
[9] WANG Z, SEZEN H, LIU J, et al. Tunable coordinative defects in UHM-3 surface-mounted MOFs for gas adsorption and separation:a combined experimental and theoretical study[J]. Microporous & Mesoporous Materials, 2015, 207:53-60.
[10] KE F, QIU L G, ZHU J. Fe3O4@MOF core-shell magnetic microspheres as excellent catalysts for the Claisen-Schmidt condensation reaction[J]. Nanoscale, 2014, 6(3):1596-1601.
[11] CHOWDHURY M A. Metal-organic frameworks for biomedical applications in drug delivery, and as MRI contrast agents[J]. Journal of Biomedical Materials Research Part A, 2017, 105A:1184-1194.
[12] 周健,谢林华,豆义波,等. MOFs基材料在超级电容器中的应用[J].化工进展, 2016, 35(9):2830-2838. ZHOU J, XIE L H, DOU Y B, et al. MOFs-based materials for supercapacitor[J]. Chemical Industry and Engineering Progress, 2016, 35(9):2830-2838.
[13] 杨蓉, 邓坤发, 刘晓艳, 等. 锂硫电池正极复合材料研究现状[J]. 化工进展, 2015, 34(5):1340-1344. YANG R, DENG K F, LIU X Y, et al. Recent progress of sulfur composites as cathode materials for lithium sulfur batteries[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1340-1344.
[14] ZHANG S S. Liquid electrolyte lithium-sulfur battery:fundamental chemistry, problems, and solutions[J]. Journal of Power Sources, 2013, 231(2):153-162.
[15] SON Y, LEE J, SON Y, et al. Recent advances in lithium-sulfide cathode materials and their use in lithium-sulfur batteries[J]. Advanced Energy Materials, 2015, 5(16):1-14.
[16] ZHENG J, TIAN J, WU D, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014, 14(5):2345-2352.
[17] WANG Z, DOU Z, CUI Y, et al. Sulfur encapsulated ZIF-8 as cathode material for lithium-sulfur battery with improved cyclability[J]. Microporous & Mesoporous Materials, 2014, 185(2):92-96.
[18] WANG Z, WANG B, YANG Y, et al. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(37):20999-21021.
[19] LIU F, FAN F T, LU Y C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5):1635-1643.
[20] 肖淑娟,于守武,谭小耀.石墨烯类材料的应用及研究进展[J].化工进展, 2015, 34(5):1345-1348. XIAO S J, YU S W, TAN X Y. Research progress of graphene-based composite electrodes in asymmetric supercapacitors[J]. Chemical Industry and Engineering Progress, 2015, 34(5):1345-1348.
[21] BAO W, ZHANG Z, QU Y, et al. Confine sulfur in mesoporous metal-organic framework@reduced graphene oxide for lithium sulfur battery[J]. Journal of Alloys & Compounds, 2014, 582(2):334-340.
[22] LI Z, LI C, GE X, et al. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries[J]. Nano Energy, 2016, 23:15-26.
[23] CHEN R, ZHAO T, TINA T, et al. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries[J]. APL Materials, 2014, 2(12).DOI:10.1063/1. 4901751.
[24] NAGARATHINAM M, SARAVANAN K, PHUA E J, et al. Redox-active metal-centered oxalato phosphate open framework cathode materials for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(24):5866-5870.
[25] SHAHYLHAMEED A, NAGARATHINAM M, SCHREYER M, et al. A layered oxalatophosphate framework as a cathode material for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(18):5721-5726.
[26] LI X, CHENG F, ZHANG S, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O (1,3,5-benzenetribenzoate) 2[J]. Journal of Power Sources, 2006, 160(1):542-547.
[27] SARAVANAN K, NAGARATHINAM M, BALAYA P, et al. Lithium storage in a metal organic framework with diamondoid topology a case study on metal formates[J]. Journal of Materials Chemistry, 2010, 20:8329-8335.
[28] JIN Y, ZHAO C, SUN Z, et al. Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries[J]. RSC Advances, 2016, 6(36):30763-30768.
[29] YANG X, LIU L, YUAN R, et al. Self-assembly of metal-organic frameworks and graphene oxide as precursors for lithium-ion battery applications[J]. Journal of Nanoparticle Research, 2016, 18(313):1-8.
[30] KE F S, WU Y S, DENG H. Metal-organic frameworks for lithium-ion batteries and supercapacitors[J]. Journal of Solid State Chemistry, 2014, 223:109-121.
[31] YU A, CHEN Z, MARIC R, et al. Electrochemical supercapacitors for energy storage and delivery:advanced materials, technologies and applications[J]. Applied Energy, 2015, 153:1-2.
[32] WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,2012, 41(2):797-828.
[33] DÍAZ R, ORCAJO M G, BOTAS J A, et al. Co8-MOF-5 as electrode for supercapacitors[J]. Materials Letters, 2012, 68:126-128.
[34] LEE D Y, SHINDE D V, KIM E K, et al. Supercapacitive property of metal-organic-frameworks with different pore dimensions and morphology[J]. Microporous & Mesoporous Materials, 2013, 171(10):53-57.
[35] LIAO C M, ZUO Y K, ZHANG W, et al. Electrochemical performance of metal-organic frameworks synthesized by a solvothermal method for supercapacitors[J]. Russ. J. Electrochem., 2012, 49(10):983-986.
[36] LI W H, DING K, TIAN H R, et al. Supercapacitors:conductive metal organic framework nanowire array electrodes for high performance solid-state supercapacitors[J]. Advanced Functional Materials, 2017, 27(27).
[37] GUO Z P, ZHANG C F, WU H B, et al. Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries[J]. Angewandte Chemie, 2012, 124(38):9730-9733.
[38] GENG X Y, RAO M M, LI X P, et al. Highly dispersed sulfur in multi-walled carbon nanotubes for lithium-sulfur battery[J]. Journal of Solid State Electrochemistry, 2013, 17(4):987-992.
[39] HUANG J Q, LIU X F, ZHANG Q, et al. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40 to 60℃[J]. Nano Energy, 2013, 2(2):314-321.
[40] 孟宪斌,高秋明.由含铝金属有机骨架材料制备的多孔碳在锂硫电池中的应用[J].高等学校化学学报, 2014, 35(8):1715-1719. MENG X B, GAO Q M. Porous carbon from carbonized metal-organic frameworks for lithium-sulfur batteries[J]. Chemical Journal of Chinese Universities, 2014, 35(8):1715-1719.
[41] LI X, SUN Q, LIU J, et al. Tunable porous structure of metal organic framework derived carbon and the application in lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 302:174-179.
[42] HE J, CHEN Y, LV W, et al. From metal-organic framework to Li2S@C-Co-N nanoporous architecture:a high-capacity cathode for lithium-sulfur batteries[J]. ACS Nano, 2016, 10(12):10981-10987.
[43] WANG M, YANG H, ZHOU X, et al. Rational design of SnO2@C nanocomposites for lithium ion batteries by utilizing adsorption properties of MOFs[J]. Chemical Communications, 2015, 52(4):717-720.
[44] YANG D-H, ZHOU X L, ZHONG M, et al. A robust hybrid of SnO2 nanoparticles sheathed by N-doped carbon derived from ZIF-8 as anodes for Li-ion batteries[J]. ChemNanoMat, 2017, 3(4):252-258.
[45] CHEN Y, ZHENG L, FU Y, et al. MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries[J]. RSC Advances, 2016, 6(89):85917-85923.
[46] LIU J, WU C, XIAO D, et al. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage[J]. Small, 2016, 12(17):2354-2366.
[47] YIN D, HUANG G, SUN Q, et al. RGO/Co3O4 composites prepared using GO-MOFs as precursor for advanced lithium-ion batteries and supercapacitors electrodes[J]. Electrochimica Acta, 2016, 215:410-419.
[48] BAO W, MONDAL A K, XU J, et al. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors[J]. Journal of Power Sources, 2016, 325:286-291.
[49] YANG J Q, DUAN X C, GUO W, et al. Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors[J]. Nano Energy, 2014, 5(2):74-81.
[50] LANG X, HIRATA A, FUJITA T, et al. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors[J]. Nature Nanotechnology, 2011, 6(4):232-236.
[51] LIU Y, XU J, LIU S. Porous carbon nanosheets derived from Al-based MOFs for supercapacitors[J]. Microporous & Mesoporous Materials, 2016, 236:94-99.
[52] YI H, WANG H, JING Y, et al. Asymmetric supercapacitors based on carbon nanotubes@NiO ultrathin nanosheets core-shell composites and MOF-derived porous carbon polyhedrons with super-long cycle life[J]. Journal of Power Sources, 2015, 285:281-290. |