[1] 宋振宇,童张法,张寒冰,等. 微波辅助制备纳米ZnO及其光催化降解染料的性能[J]. 化工进展, 2015, 34(12):4310-4314. SONG Zhenyu, TONG Zhangfa, ZHANG Hanbing, et al. Photocatalytic degradation of dyes by nano-ZnO prepared with microwave assistance[J]. Chemical Industry and Engineering Progress, 2015, 34(12):4310-4314.
[2] 刘文芳,周汝利,王燕子. 光催化剂TiO2改性的研究进展[J]. 化工进展, 2016, 35(8):2446-2454. LIU Wenfang, ZHOU Ruli, WANG Yanzi. Research progress on modification of TiO2 photocatalyst[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2446-2454.
[3] HEWLETT R M, MCLACHLAN M A. Surface structure modification of ZnO and the Impact on electronic properties[J]. Advanced Materials, 2016, 28(20):3893-3921.
[4] 赵晓晓,高志华,郝树宏,等. 不同形貌纳米氧化锌的制备及其对有机催化反应活性的影响研究进展[J]. 化工进展, 2014, 33(s1):210-215. ZHAO Xiaoxiao, GAO Zhihua, HAO Shuhong, et al. Synthesis of nano ZnO with different morphologies and its influence on organic catalytic reactivity[J]. Chemical Industry and Engineering Progress, 2014, 33(s1):210-215.
[5] SINGLA M L, SHAFEEQ M M, KUMAR M. Optical characterization of ZnO nanoparticles capped with various surfactants[J]. Journal of Luminescence, 2009, 129(5):434-438.
[6] MOGHADDAM E, YOUZBASHI A A, KAZEMZADEH A, et al. Photoluminescence investigation of ZnO quantum dots surface modified with silane coupling agent as a capping agent[J]. Journal of Luminescence, 2015, 168:158-162.
[7] RABIN N N, MORSHED J, AKHTER H, et al. Surface modification of the ZnO nanoparticles with γ-aminopropyltriethoxysilane and study of their photocatalytic activity, optical properties and antibacterial activities[J]. International Journal of Chemical Reactor Engineering, 2016, 14(3):785-794.
[8] ZHANG Z Y, XIONG H M. Photoluminescent ZnO nanoparticles and their biological applications[J]. Materials, 2015, 8(6):3101-3127.
[9] LOWRY M S, HUBBLE D R, WRESSELL A L, et al. Assessment of UV-permeability in nano-ZnO filled coatings via high throughput experimentation[J]. Journal of Coatings Technology and Research, 2008, 5(2):233-239.
[10] XIONG H M, WANG Z D, XIA Y Y. Polymerization initiated by inherent free radicals on nanoparticle surfaces:a simple method of obtaining ultrastable(ZnO) polymer core-shell nanoparticles with strong blue fluorescence[J]. Advanced Materials, 2010, 18(6):748-751.
[11] CAO Z, ZHANG Z, WANG F, et al. Synthesis and UV shielding properties of zinc oxide ultrafine particles modified with silica and trimethyl siloxane[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 340(1):161-167.
[12] 庄稼,刘猛,刘汉斌. MAA修饰ZnO量子点及其发光特性[J]. 中国科学:化学, 2010, 40(4):322-330. ZHUANG Jia, LIU Meng, LIU Hanbin. MAA-modified ZnO quantum dots and their luminescence properties[J]. Scientia Sinica Chimica, 2010, 40(4):322-330.
[13] ZHANG L, YIN L, WANG C, et al. Origin of visible photoluminescence of ZnO quantum dots:defect-dependent and size-dependent[J]. The Journal of Physical Chemistry C, 2010, 114(21):9651-9658.
[14] DJURIŠIC A B, LEUNG Y H. Optical properties of ZnO nanostructures[J]. Small, 2006, 2(8/9):944-961.
[15] SHI H, LI W, SUN L, et al. Synthesis of silane surface modified ZnO quantum dots with ultrastable, strong and tunable luminescence[J]. Chemical Communications, 2011, 47(43):11921.
[16] 徐玉东,张正勇,孔继烈,等. 聚甲基丙烯酰胺包覆的ZnO发光量子点及其在细胞成像中的应用[J]. 高等学校化学学报, 2013, 34(7):1565-1570. XU Yudong, ZHANG Zhengyong, KONG Jilie, et al. Photoluminescent ZnO quantum dots coated by polymethacrylamide and their application in cell imaging[J]. Chemical Journal of Chinese Universities, 2013, 34(7):1565-1570.
[17] 王立贤, 赵文涛, 王鲁璐, 等. 工业级纳米氧化锌的合成及性能[J]. 化工进展, 2016, 35(s1):259-264. WANG Lixian, ZHAO Wentao, WANG Lulu, et al. The synthesis and properties of industrial-grade zinc oxide[J]. Chemical Industry and Engineering Progress, 2016, 35(s1):259-264.
[18] 檀满林,王彦涛,张维丽,等. 基于PEG修饰的ZnO量子点光学特性研究[J]. 无机材料学报, 2014, 29(10):1039-1043. TAN Manlin, WANG Yantao, ZHANG Weili, et al. Optical characteristics of zinc oxide nanoparticles with surface modification using polyethylene glycol[J]. Journal of Inorganic Materials, 2014, 29(10):1039-1043.
[19] LIU W, WANG H, QI L, et al. Strong UV intensity enhancement in ZnO nanorods via surface modification of formic acid[J]. Materials Science in Semiconductor Processing, 2013, 16(6):1931-1935.
[20] WANG X, ZHOU S, WU L. Facile encapsulation of SiO2 on ZnO quantum dots and its application in waterborne UV-shielding polymer coatings[J]. Journal of Materials Chemistry C, 2013, 1(45):7547-7553.
[21] SIMONELLI G, ARANCIBIA E L. Effects of size and surface functionalization of zinc oxide(ZnO) particles on interactions with bovine serum albumin(BSA)[J]. Journal of Molecular Liquids,2015, 211:742-746.
[22] HSU A, LIU F, LEUNG Y H, et al. Is the effect of surface modifying molecules on antibacterial activity universal for a given material?[J]. Nanoscale, 2014, 6(17):10323-10331.
[23] 铁伟伟,张艳鸽,郑直,等. 含共轭结构的ZnO/聚乙烯醇复合光催化材料的制备与性能[J]. 复合材料学报, 2016, 33(7):1423-1428. TIE Weiwei, ZHANG Yange, ZHENG Zhi, et al. Fabrication and properties of ZnO/poly(vinyl alcohol) composite photocatalyst materials with conjugation structure[J]. Acta Materiae Compositae Sinica, 2016, 33(7):1423-1428.
[24] AHMED S, RASUL M G, MARTENS W N, et al. Heterogeneous photocatalytic degradation of phenols in wastewater:a review on current status and developments[J]. Desalination, 2010, 261(1):3-18.
[25] KUMAR R, ANANDAN S, HEMBRAM K, et al. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications[J]. ACS Applied Materials & Interfaces, 2014, 6(15):13138-13148.
[26] SAKTHIVEL S, NEPPOLIAN B, SHANKAR M V, et al. Solar photocatalytic degradation of azo dye:comparison of photocatalytic efficiency of ZnO and TiO2[J]. Solar Energy Materials and Solar Cells, 2003, 77(1):65-82.
[27] PAN L, MUHAMMAD T, MA L, et al. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis[J]. Applied Catalysis B:Environmental, 2016, 189:181-191.
[28] SUN Q, LI Y, DOU J, et al. Improving the efficiency of dye-sensitized solar cells by photoanode surface modifications[J]. Science China Materials, 2016, 59(10):867-883.
[29] WENG B, YANG M, ZHANG N, et al. Toward the enhanced photoactivity and photostability of ZnO nanospheres via intimate surface coating with reduced graphene oxide[J]. Journal of Materials Chemistry A, 2014, 2(24):9380-9389.
[30] KRISHNAKUMAR B, IMAE T. Chemically modified novel PAMAM-ZnO nanocomposite:synthesis, characterization and photocatalytic activity[J]. Applied Catalysis A:General, 2014, 486:170-175.
[31] 冯昌,邓晓燕,倪晓晓,等. 碳点修饰多孔ZnO纳米棒增强光催化性能[J]. 物理化学学报, 2015, 31(12):2349-2357. FENG Chang, DENG Xiaoyan, NI Xiaoxiao, et al. Fabrication of carbon dots modified porous ZnO nanorods with enhanced photocatalytic activity[J]. Acta Physico-Chimica Sinica, 2015, 31(12):2349-2357.
[32] HONG R Y, LI J H, CHEN L L, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles[J]. Powder Technology, 2009, 189(3):426-432.
[33] 李素娟,陈勐,郑星,等. 核壳型PS@ZnO纳米复合材料的制备及其光催化性能[J]. 化工进展, 2016, 35(8):2513-2517. LI Sujuan, CHEN Meng, ZHENG Xing, et al. Synthesis and photocatalytic properties of PS@ZnO core-shell structure nano-composites[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2513-2517.
[34] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles:antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3):219-242.
[35] PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study[J]. Science and Technology and Advanced Materials, 2008, 9(3):35004.
[36] 卢亢,韦加娜,熊亮. ZnO/活性碳纤维的制备及其抗菌性能[J]. 化工进展, 2015, 34(1):208-211. LU Kang, WEI Jiana, XIONG Liang. Research on preparation and antibacterial properties of ZnO-activated carbon fiber[J]. Chemical Industry and Engineering Progress, 2015, 34(1):208-211.
[37] JOSHI P, CHAKRABORTI S, CHAKRABARTI P, et al. Role of surface adsorbed anionic species in antibacterial activity of ZnO quantum dots against escherichia coli[J]. Journal of Nanoscience and Nanotechnology, 2009, 9(11):6427-6433.
[38] SCHWARTZ V B, THÉTIOT F, RITZ S, et al. Antibacterial surface coatings from zinc oxide nanoparticles embedded in poly (N-isopropylacrylamide) hydrogel surface layers[J]. Advanced Functional Materials, 2012, 22(11):2376-2386.
[39] LUO M, SHEN C, FELTIS B N, et al. Reducing ZnO nanoparticle cytotoxicity by surface modification[J]. Nanoscale, 2014, 6(11):5791-5798.
[40] RAMASAMY M, DAS M, AN S, et al. Role of surface modification in zinc oxide nanoparticles and its toxicity assessment toward human dermal fibroblast cells[J]. International Journal of Nanomedicine, 2014, 9(1):3707-3718.
[41] MALLAKPOUR S, BEHRANVAND V. Nanocomposites based on biosafe nano ZnO and different polymeric matrixes for antibacterial, optical, thermal and mechanical applications[J]. European Polymer Journal, 2016, 84:377-403.
[42] MA X, ZHANG W. Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane[J]. Polymer Degradation and Stability, 2009, 94(7):1103-1109.
[43] LI S, LI Y. Mechanical and antibacterial properties of modified nano-ZnO/high-density polyethylene composite films with a low doped content of nano-ZnO[J]. Journal of Applied Polymer Science, 2010, 116(5):2965-2969.
[44] MALLAKPOUR S, MADANI M. The effect of the coupling agents KH550 and KH570 on the nanostructure and interfacial interaction of zinc oxide/chiral poly(amide-imide) nanocomposites containing l-leucine amino acid moieties[J]. Journal of Materials Science, 2014, 49(14):5112-5118.
[45] CHRISTOPHER G, KULANDAINATHAN M A, HARICHANDRAN G. Highly dispersive waterborne polyurethane/ZnO nanocomposites for corrosion protection[J]. Journal of Coatings Technology and Research, 2015, 12(4):657-667.
[46] YUAN Z, ZHOU W, HU T, et al. Fabrication and properties of silicone rubber/ZnO nanocomposites via in situ surface hydrosilylation[J]. Surface Review and Letters, 2011, 18(1/2):33-38.
[47] GAO W, ZHOU B, LIU Y, et al. The influence of surface modification on the structure and properties of a zinc oxide-filled poly (ethylene terephthalate)[J]. Polymer International, 2013, 62(3):432-438.
[48] JI P, WANG C, JIANG Z, et al. Influence of surface modification of zinc oxide nanoparticles on thermal behavior and hydrophilic property of PET-PEG composites[J]. Polymer Composites, 2016, 37(6):1830-1838. |