化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3816-3827.DOI: 10.16085/j.issn.1000-6613.2024-0862
• 能源加工与技术 • 上一篇
石秦川1(
), 王施媛1, 李培雅1, 路书涵1, 王波1, 王家慧1, 杨福胜1,2, 王斌1,2(
), 杨生春3, 方涛1,2(
)
收稿日期:2024-05-27
修回日期:2024-09-25
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
王斌,方涛
作者简介:石秦川(1998—),男,博士研究生,研究方向为有机液态储氢相平衡。E-mail:virtual0w@stu.xjtu.edu.cn。
基金资助:
SHI Qinchuan1(
), WANG Shiyuan1, LI Peiya1, LU Shuhan1, WANG Bo1, WANG Jiahui1, YANG Fusheng1,2, WANG Bin1,2(
), YANG Shengchun3, FANG Tao1,2(
)
Received:2024-05-27
Revised:2024-09-25
Online:2025-07-25
Published:2025-08-04
Contact:
WANG Bin, FANG Tao
摘要:
氢能是实现“双碳”目标的重要支撑,而有机液态储氢载体(liquid organic hydrogen carriers,LOHCs)技术是发展氢能的重要研究内容,芳杂环储氢载体是目前研究的热点。迄今为止,国内外对加氢过程效率低的问题尚缺乏深入的研究,为了完成加氢过程的科学设计与优化,储氢体系相关的溶解行为与相平衡研究不可或缺。LOHCs加氢反应涉及气液固三相体系的物理溶解-化学反应串联过程,加氢所需氢气来自液体中溶解的氢,而由于氢气在液相中的溶解度与相平衡数据的缺失,现有的LOHCs加氢反应动力学计算并不准确,这需要氢气在不同LOHCs中的溶解度数据修正。本文对氢气在有机液体中溶解度的研究现状进行了阐述,涉及单一氢气的溶解度和混合气体在有机液体中的溶解度。本文详细描述了研究氢气溶解度时所采用的实验方法的种类及优缺点,依据实验方法的不同搭建了实验装置,对数据的关联模型及预测模型进行了讨论。
中图分类号:
石秦川, 王施媛, 李培雅, 路书涵, 王波, 王家慧, 杨福胜, 王斌, 杨生春, 方涛. 氢在有机液态储氢载体中的溶解度研究进展[J]. 化工进展, 2025, 44(7): 3816-3827.
SHI Qinchuan, WANG Shiyuan, LI Peiya, LU Shuhan, WANG Bo, WANG Jiahui, YANG Fusheng, WANG Bin, YANG Shengchun, FANG Tao. Research on the solubilities of hydrogen in liquid organic hydrogen carriers[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3816-3827.
| [1] | ZHANG Sai, LIU Yuxuan, ZHANG Mingkai, et al. Sustainable production of hydrogen with high purity from methanol and water at low temperatures[J]. Nature Communications, 2022, 13(1): 5527. |
| [2] | 毛宗强. 氢安全[M]. 北京: 化学工业出版社, 2020: 263. |
| MAO Zongqiang. Hydrogen safety[M]. Beijing: Chemical Industry Press, 2020: 263. | |
| [3] | 宋鹏飞, 侯建国, 王秀林. 基于有机物储氢的国际氢供应链成本分析与降本策略[J]. 天然气化工——C1化学与化工, 2022, 47(5): 26-31. |
| SONG Pengfei, HOU Jianguo, WANG Xiulin. Cost analysis and cost reduction strategy of international hydrogen supply chain based on organic hydrogen storage[J]. Natural Gas Chemical Industry, 2022, 47(5): 26-31. | |
| [4] | BYUN Manhee, LEE Aejin, CHEON Seunghyun, et al. Preliminary feasibility study for hydrogen storage using several promising liquid organic hydrogen carriers: Technical, economic, and environmental perspectives[J]. Energy Conversion and Management, 2022, 268: 116001. |
| [5] | HAUER Andreas. Advances in energy storage: Latest developments from R&D to the market[M]. New York: John Wiley & Sons, 2022: 928. |
| [6] | MODISHA Phillimon M, OUMA Cecil N M, GARIDZIRAI Rudaviro, et al. The prospect of hydrogen storage using liquid organic hydrogen carriers[J]. Energy& Fuels. 2019, 33(4): 2778-2796. |
| [7] | NIERMANN M, TIMMERBERG S, DRÜNERT S, et al. Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110171. |
| [8] | 袁胜楠, 张龙龙, 赵宁, 等. 液态有机物储氢技术发展历程与问题分析[J]. 太阳能, 2022(9): 5-14. |
| YUAN Shengnan, ZHANG Longlong, ZHAO Ning, et al. Development history and problem analysis of liquid organic hydrogen carrier technology[J]. Solar Energy, 2022(9): 5-14. | |
| [9] | WANG Bin, LI Peiya, WANG Shiyuan, et al. Tuning the interaction between Pd and MgAl2O4 to enhance the dehydrogenation activity and selectivity of dodecahydro-N-ethylcarbazole[J]. ACS Sustainable Chemistry & Engineering, 2023, 11: 5485-5494. |
| [10] | KIERMAIER Stephan, LEHMANN Daniel, Andreas BÖSMANN, et al. Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15660-15670. |
| [11] | ZAKGEYM Dina, ENGL Timo, MAHAYNI Yazan, et al. Development of an efficient Pt/SiO2 catalyst for the transfer hydrogenation from perhydro-dibenzyltoluene to acetone[J]. Applied Catalysis A: General, 2022, 639: 118644. |
| [12] | Alexander SØGAARD, SCHEUERMEYER Marlene, Andreas BÖSMANN, et al. Homogeneously-catalysed hydrogen release/storage using the 2-methylindole/2-methylindoline LOHC system in molten salt-organic biphasic reaction systems[J], Chemical Communications, 2019, 55(14): 2046-2049. |
| [13] | DONG Yuan, YANG Ming, LI Linlin, et al. Study on reversible hydrogen uptake and release of 1,2-dimethylindole as a new liquid organic hydrogen carrier[J]. International Journal of Hydrogen Energy, 2019, 44(10): 4919-4929. |
| [14] | YANG Ming, XING Xile, ZHU Ting, et al. Fast hydrogenation kinetics of acridine as a candidate of liquid organic hydrogen carrier family with high capacity[J]. Journal of Energy Chemistry, 2020, 41: 115-119. |
| [15] | DONG Yuan, YANG Ming, ZHU Ting, et al. Hydrogenation kinetics of N-ethylindole on a supported Ru catalyst[J]. Energy Technology, 2018, 6(3): 558-562. |
| [16] | YU Yang, HE Teng, WU Anan, et al. Reversible hydrogen uptake/release over a sodium phenoxide-cyclohexanolate pair[J]. Angewandte Chemie International Edition, 2019, 58(10): 3102-3107. |
| [17] | TAN Khai Chen, YU Yang, CHEN Ruting, et al. Metallo-N-heterocycles—A new family of hydrogen storage material[J]. Energy Storage Materials, 2020, 26: 198-202. |
| [18] | IMADA Toyoki, CHIKU Masanobu, HIGUCHI Eiji, et al. Effect of rhodium modification on activity of platinum nanoparticle-loaded carbon catalysts for electrochemical toluene hydrogenation[J]. ACS Catalysis, 2020, 10(22): 13718-13728. |
| [19] | Guido P PEZ, SCOTT Aaron R, COOPER Alan C, et al. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates: US7351395[P]. 2008-04-01. |
| [20] | CLOT Eric, EISENSTEIN Odile, CRABTREE Robert H. Computational structure-activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials[J]. Chemical Communications, 2007(22): 2231-2233. |
| [21] | ZHU Qilong, XU Qiang. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage[J]. Energy & Environmental Science, 2015, 8(2): 478-512. |
| [22] | WANG Bin, LI Peiya, DONG Qian, et al. Bimetallic NiCo/AC catalysts with a strong coupling effect for high-efficiency hydrogenation of N-ethylcarbazole[J]. ACS Applied Energy Materials, 2023, 6(3): 1741-1752. |
| [23] | WANG Bin, CHANG Tieyan, JIANG Zhao, et al. Component controlled synthesis of bimetallic PdCu nanoparticles supported on reduced graphene oxide for dehydrogenation of dodecahydro-N-ethylcarbazole[J]. Applied Catalysis B: Environmental, 2019, 251: 261-272. |
| [24] | WANG Bin, CHEN Youtao, CHANG Tieyan, et al. Facet-dependent catalytic activities of Pd/rGO: Exploring dehydrogenation mechanism of dodecahydro-N-ethylcarbazole[J]. Applied Catalysis B: Environmental, 2020, 266: 118658. |
| [25] | YANG Yang, LIN Xinzhang, TANG Jie, et al. Supported mesoporous Pt catalysts with excellent performance for toluene hydrogenation under low reaction pressure[J]. Molecular Catalysis, 2022, 524: 112341. |
| [26] | WANG Bin, WANG Shiyuan, LU Shuhan, et al. Trace ultrafine Ru nanoparticles on Ni/Al hydrotalcite-derived oxides supports as extremely active catalysts for N-ethylcarbazole hydrogenation[J]. Fuel, 2023, 339: 127338. |
| [27] | WANG Bin, LU Shuhan, WANG Shiyuan, et al. Isomerization pathway of N-ethylcarbazole hydrogenation products affected by metal-support interactions[J]. Applied Surface Science, 2023, 618: 156558. |
| [28] | FISCHER Armin, Karsten MÜLLER, ARLT Wolfgang. Measurement of micro kinetics of hydrogenation in liquid phase using Raman spectroscopy[J]. Chemical Engineering & Technology, 2017, 40(1): 56-63. |
| [29] | PARK Sanghyoun, ABDULLAH Malik Muhamamd, SEONG Kwanjae, et al. Kinetic analysis of dibenzyltoluene hydrogenation on commercial Ru/Al2O3 catalyst for liquid organic hydrogen carrier[J]. Chemical Engineering Journal, 2023, 474:145743. |
| [30] | WAN Chao, AN Yue, XU Guohua, et al. Study of catalytic hydrogenation of N-ethylcarbazole over ruthenium catalyst[J]. International Journal of Hydrogen Energy, 2012, 37(17): 13092-13096. |
| [31] | JORSCHICK H, VOGL M, PREUSTER P, et al. Hydrogenation of liquid organic hydrogen carrier systems using multicomponent gas mixtures[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31172-31182. |
| [32] | NIERMANN M, DRÜNERT S, KALTSCHMITT M, et al. Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain[J]. Energy & Environmental Science, 2019, 12(1): 290-307. |
| [33] | 邵志刚, 衣宝廉. 氢能与燃料电池发展现状及展望[J]. 中国科学院院刊, 2019, 34(4): 469-477. |
| SHAO Zhigang, YI Baolian. Developing trend and present status of hydrogen energy and fuel cell development[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(4): 469-477. | |
| [34] | LEINWEBER Anatol, Karsten MÜLLER. Solubility of carbon dioxide, methane and nitrogen in liquid dibenzyl toluene[J]. Journal of Chemical & Engineering Data, 2018, 63(9): 3527-3533. |
| [35] | ASLAM Rabya, Karsten MÜLLER, ARLT Wolfgang. Experimental study of solubility of water in liquid organic hydrogen carriers[J]. Journal of Chemical & Engineering Data, 2015, 60(7): 1997-2002. |
| [36] | ASLAM Rabya, Karsten MÜLLER, Michael MÜLLER, et al. Measurement of hydrogen solubility in potential liquid organic hydrogen carriers[J]. Journal of Chemical & Engineering Data, 2016, 61(1): 643-649. |
| [37] | JANDER Julius H, SCHMIDT Patrick S, GIRAUDET Cédric, et al. Hydrogen solubility, interfacial tension, and density of the liquid organic hydrogen carrier system diphenylmethane/dicyclohexylmethane[J]. International Journal of Hydrogen Energy, 2021, 46(37): 19446-19466. |
| [38] | BJELOBRK Zoran, MENDELS Dan, KARMAKAR Tarak, et al. Solubility prediction of organic molecules with molecular dynamics simulations[J]. Crystal Growth & Design, 2021, 21(9): 5198-5205. |
| [39] | Stefan DÜRR, Michael MÜLLER, JORSCHICK Holger, et al. Carbon dioxide-free hydrogen production with integrated hydrogen separation and storage[J]. ChemSusChem, 2017, 10(1): 42-47. |
| [40] | KIM Tae Wan, JEONG Hwiram, KIM Dongun, et al. Feasible coupling of CH4/H2 mixtures to H2 storage in liquid organic hydrogen carrier systems[J]. Journal of Power Sources, 2022, 541: 231721. |
| [41] | LIU Hu, XUE Jingwen, YU Pengfei, et al. Hydrogenation of N-ethylcarbazole with hydrogen-methane mixtures for hydrogen storage[J]. Fuel, 2023, 331: 125920. |
| [42] | JORSCHICK Holger, BULGARIN Alexander, ALLETSEE Lukas, et al. Charging a liquid organic hydrogen carrier with wet hydrogen from electrolysis[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 4186-4194. |
| [43] | DOHRN Ralf, PEPER Stephanie, SECUIANU Catinca, et al. High-pressure fluid-phase equilibria: Experimental methods, developments and systems investigated (2013—2016)[J]. Fluid Phase Equilibria, 2024, 579: 113978. |
| [44] | 王世丽, 翟康, 张瑞芹, 等. 氢气在柴油中溶解度的测定与模拟计算[J]. 化工进展, 2013, 32(9): 2049-2055. |
| WANG Shili, ZHAI Kang, ZHANG Ruiqin, et al. Measurement and simulation of hydrogen solubility in diesels[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2049-2055. | |
| [45] | LUO H, LING K, ZHANG W, et al. A model of solubility of hydrogen in hydrocarbons and coal liquid[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2010, 33(1): 38-48. |
| [46] | YAN Bo, ZHANG Guangpeng, GAO Peng, et al. Dissolution behavior of hydrogen in the model recycle solvent of mild direct coal liquefaction[J]. Fuel Processing Technology, 2021, 223: 106982. |
| [47] | XIE Zhuanzhuan, SNAVELY William K, SCURTO Aaron M, et al. Solubilities of CO and H2 in neat and CO2-expanded hydroformylation reaction mixtures containing 1-octene and nonanal up to 353.15K and 9MPa[J]. Journal of Chemical & Engineering Data, 2009, 54(5): 1633-1642. |
| [48] | SAAJANLEHTO Meri, Petri UUSI-KYYNY, ALOPAEUS Ville. A modified continuous flow apparatus for gas solubility measurements at high pressure and temperature with camera system[J]. Fluid Phase Equilibria, 2014, 382: 150-157. |
| [49] | YEOH Hooi SIM, HEAN CHONG Gun, MOHD AZAHAN Norazinan, et al. Solubility measurement method and mathematical modeling in supercritical fluids[J]. Engineering Journal, 2013, 17(3): 67-78. |
| [50] | PARK Jongkee, ROBINSON Robert L, GASEM Khaled A M. Solubilities of hydrogen in aromatic hydrocarbons from 323 to 433K and pressures to 21.7MPa[J]. Journal of Chemical & Engineering Data, 1996, 41(1):70-73. |
| [51] | ZHOU Zhiming, CHENG Zhenmin, YANG Dong, et al. Solubility of hydrogen in pyrolysis gasoline[J]. Journal of Chemical & Engineering Data, 2006, 51(3): 972-976. |
| [52] | QURESHI Muhammad Saad, TOURONEN Jouni, Petri UUSI-KYYNY, et al. Solubility of hydrogen in bio-oil compounds[J]. The Journal of Chemical Thermodynamics, 2016, 102: 406-412. |
| [53] | Gorica IVANIŠ, FELE ŽILNIK Ljudmila, LIKOZAR Blaž, et al. Hydrogen solubility in bio-based furfural and furfuryl alcohol at elevated temperatures and pressures relevant for hydrodeoxygenation[J]. Fuel, 2021, 290: 120021. |
| [54] | LEI Zhigang, GUO Yanyan, ZHAO Lu, et al. H2 solubility and mass transfer in diesel: An experimental and modeling study[J]. Energy & Fuels, 2016, 30(8):6257-6263. |
| [55] | LEI Zhigang, GUO Yaru, GUO Yanyan, et al. H2 solubility and mass transfer in anthraquinone working solution: Experimental and modeling study[J]. Chinese Journal of Chemical Engineering, 2017, 25(2): 143-148. |
| [56] | LEI Zhigang, JIANG Yifan, LIU Yao, et al. Solubility and mass transfer of H2, CH4, and their mixtures in vacuum gas oil: An experimental and modeling study[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 3000-3009. |
| [57] | NASERY Saeid, Ali BARATI-HAROONI, TATAR Afshin, et al. Accurate prediction of solubility of hydrogen in heavy oil fractions[J]. Journal of Molecular Liquids, 2016, 222: 933-943. |
| [58] | HADAVIMOGHADDAM Fahimeh, ANSARI Sajjad, ATASHROUZ Saeid, et al. Application of advanced correlative approaches to modeling hydrogen solubility in hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 2023, 48(51): 19564-19579. |
| [59] | NAIT AMAR Menad, ALQAHTANI Fahd Mohamad, DJEMA Hakim, et al. Predicting the solubility of hydrogen in hydrocarbon fractions: Advanced data-driven machine learning approach and equation of state[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 153: 105215. |
| [60] | ANSARI Sajjad, Majid SAFAEI-FAROUJI, ATASHROUZ Saeid, et al. Prediction of hydrogen solubility in aqueous solutions: Comparison of equations of state and advanced machine learning-metaheuristic approaches[J]. International Journal of Hydrogen Energy, 2022, 47(89): 37724-37741. |
| [61] | JIANG Yongchun, ZHANG Guangfen, WANG Juanjuan, et al. Hydrogen solubility in aromatic/cyclic compounds: Prediction by different machine learning techniques[J]. International Journal of Hydrogen Energy, 2021, 46(46): 23591-23602. |
| [62] | MOHAMMADI Mohammad-Reza, HADAVIMOGHADDAM Fahimeh, ATASHROUZ Saeid, et al. Application of robust machine learning methods to modeling hydrogen solubility in hydrocarbon fuels[J]. International Journal of Hydrogen Energy, 2022, 47(1): 320-338. |
| [63] | ZHANG Junfang, CLENNELL Michael B, SAGOTRA Arun, et al. Molecular dynamics simulation and machine learning for predicting hydrogen solubility in water: Effects of temperature, pressure, finite system size and choice of molecular force fields[J]. Chemical Physics, 2023, 564: 111725. |
| [64] | DING Weijing, SHI Jinwen, WEI Wenwen, et al. A molecular dynamics simulation study on solubility behaviors of polycyclic aromatic hydrocarbons in supercritical water/hydrogen environment[J]. International Journal of Hydrogen Energy, 2021, 46(3): 2899-2904. |
| [65] | YU Siqin, ZHENG Ruyi, KANG Qinjun, et al. Predicted tenfold increase of hydrogen solubility in water under pore confinement[J]. Environmental Chemistry Letters, 2024, 22(3): 945-951. |
| [66] | 科林·普尔. 超临界流体色谱技术[M]. 邓惠敏, 杨飞, 唐盛, 译. 北京: 中国轻工业出版社, 2019: 440. |
| POOLE Colin F. Supercritical fluid chromatography[M]. DENG Huimin, YANG Fei, TANG Sheng, trans. Beijing: Light Industry Press, 2019: 440. | |
| [67] | WANG Shiyuan, WANG Songhui, WANG Bin, et al. Research on binary phase equilibrium for 1‑methylnaphthalene+CO2 [J]. Journal of Chemical & Engineering Data, 2020, 65(5): 2813-2818. |
| [1] | 冯鹏, 徐东海, 何冰, 刘欢腾, 杨立杰, 王攀, 刘青山. 亚/超临界水中典型硫酸盐Na2SO4和K2SO4的溶解特性及机理[J]. 化工进展, 2025, 44(3): 1706-1715. |
| [2] | 申耀宗, 郭培民, 王磊, 孔令兵, 郭庆, 谢奕斌. HF体系中AlF3杂质的溶解度与纯化机理[J]. 化工进展, 2025, 44(2): 1157-1162. |
| [3] | 谢钰麟, 饶瑞晔, 黄建, 蒿佳怡, 王友益, 黄琦. 连续ZIF-8膜制备及在氢气分离中的研究进展[J]. 化工进展, 2024, 43(S1): 403-418. |
| [4] | 王波, 王斌, 龚翔, 杨福胜, 方涛. 基于反应器设计的有机液态储氢载体脱氢反应强化研究进展[J]. 化工进展, 2024, 43(S1): 189-208. |
| [5] | 马红周, 党煜博, 王耀宁, 曾劲阳, 赵小军, 史建伟. 废锌基脱硫剂与铜锌基催化剂协同真空碳热提取锌[J]. 化工进展, 2024, 43(9): 5275-5281. |
| [6] | 向瑞, 艾波, 吴高胜, 李瑜哲, 宗睿, 许保云, 杜丽君. 锂电添加剂FEC-VC二元体系固液平衡数据的测定及回归[J]. 化工进展, 2024, 43(8): 4246-4252. |
| [7] | 陈良, 罗冬梅, 王正豪, 钟山, 唐思扬, 梁斌. 工业副产气化学链回收氢气技术研究进展[J]. 化工进展, 2024, 43(7): 3729-3746. |
| [8] | 谢国平, 谭雪松, 刘鹏, 苗长林, 许光文, 庄新姝. 基于生物基衍生有机溶剂的木质纤维素预处理研究进展[J]. 化工进展, 2024, 43(6): 3347-3358. |
| [9] | 赵伟, 江雨寒, 李振, 李毅红, 周安宁, 王宏. 煤岩显微组分电浮选分离与制氢过程中氢/氧气泡的影响机制[J]. 化工进展, 2024, 43(5): 2428-2435. |
| [10] | 王嘉锐, 刘大伟, 邓耀, 徐瑾, 马晓迅, 徐龙. 载氧体在甲烷化学链重整反应中的研究进展[J]. 化工进展, 2024, 43(5): 2235-2253. |
| [11] | 胡洪远, 张洋, 张贺东, 范兵强, 郑诗礼, 汤吉海. 硫酸钠制备碳酸氢钠过程中Na2SO4-NH3-CO2-H2O体系相平衡规律[J]. 化工进展, 2024, 43(3): 1621-1629. |
| [12] | 周强, 殷成阳, 刘百军, 赵震. 氢气辅助HC-SCR脱硝性能和作用机制的研究进展[J]. 化工进展, 2024, 43(11): 6140-6154. |
| [13] | 苏士焜, 刘唐, 金也, 郑金玉. 氢气纯化吸附材料研究进展[J]. 化工进展, 2024, 43(10): 5612-5632. |
| [14] | 冯凯, 孟浩, 杨宇森, 卫敏. 甲醇水蒸气重整制氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5498-5516. |
| [15] | 孙崇正, 李玉星, 许洁, 韩辉, 宋光春, 卢晓. 浮式氢能储运过程中FLH2通道管外降膜流动的海上适应性强化机理[J]. 化工进展, 2024, 43(1): 338-352. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |