化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3271-3279.DOI: 10.16085/j.issn.1000-6613.2024-2121

• 专栏:化工过程强化 • 上一篇    

响应面法和熵权法对离心风机的多目标性能优化

周鹏辉1(), 曾琳1, 代黎1(), 冯小波2, 倪笛3   

  1. 1.重庆理工大学化学化工学院,重庆 400054
    2.中国石油天然气股份有限公司西南油气田重庆分公司,重庆 400021
    3.重庆国研新创智能装备技术中心(普通合伙),重庆 402760
  • 收稿日期:2024-12-30 修回日期:2025-01-30 出版日期:2025-06-25 发布日期:2025-07-08
  • 通讯作者: 代黎
  • 作者简介:周鹏辉(1999—),男,硕士研究生,研究方向为化学工程。E-mail:zph2023@stu.cqut.edu.cn
  • 基金资助:
    重庆理工大学科研基金;重庆市教委科技研究计划(KJQN202201124);重庆博士后科学基金(CSTB2023NSCQ-BHZ2146)

Numerical calculation of multi-objective performance optimization of a centrifugal fan based on response surface methodology and entropy weighting method

ZHOU Penghui1(), ZENG Lin1, DAI Li1(), FENG Xiaobo2, NI Di3   

  1. 1.College of Chemistry and Chemical Engineering, Chongqing University of Technology,Chongqing 400054, China
    2.PetroChina Southwest Oil & Gasfield Company Chongqing Branch, Chongqing 400021, China
    3.Chongqing Guoyanxinchuang Intelligent Equipment Technology Center (General Partnership), Chongqing 402760, China
  • Received:2024-12-30 Revised:2025-01-30 Online:2025-06-25 Published:2025-07-08
  • Contact: DAI Li

摘要:

离心风机是一种应用广泛的流体输送机械,研究其内部流场来优化离心风机结构,有助于提高离心风机效率,降低能耗。本文采用计算流体力学(CFD)方法,结合响应面法和熵权法,对离心风机进行多目标优化。本文主要考察了叶片数量、叶片出口角度和蜗壳宽度为优化变量,以离心风机的效率和出口压力作为优化目标进行数值计算。结果表明,叶片出口角度对离心风机的影响更大,优化后的模型在叶轮处湍流动能强度降低,气流更加均匀,最大径向速度提高了56.1%,且优化后的风机在额定工况下效率提高了3.53百分点,效率最大增加7.22百分点,出口压力平均降低8.56%,能耗降低,从而验证了优化方法的可行性。本文研究结果可以对其他旋转类化工过程机械设备的多目标优化提供一些参考。

关键词: 计算流体力学, 数值模拟, 优化, 离心风机, 响应面法

Abstract:

Centrifugal fans are widely utilized in fluid transport, and optimizing their internal flow fields can significantly enhance efficiency and reduce energy consumption. This study employed Computational Fluid Dynamics (CFD) in combination with Response Surface Methodology (RSM) and the Entropy Weighting Method to conduct a multi-objective optimization of centrifugal fan performance. Key optimization variables included blade number, blade outlet angle, and volute width, while fan efficiency and outlet pressure were selected as optimization targets for numerical analysis. The results revealed that the blade outlet angle exerted the most pronounced effect on fan performance. In the optimized model, turbulent kinetic energy at the impeller was reduced, airflow uniformity improved, radial velocity increased by 23.8%, and fan efficiency at rated operating conditions improved by 2.7%, with a peak efficiency gain of 10.64%. Additionally, outlet pressure decreased by an average of 8.56%, leading to further energy savings and supporting the efficacy of the optimization approach. These findings offer valuable insights for the multi-objective optimization of other rotating mechanical equipment in chemical processes.

Key words: computational fluid dynamics, numerical simulation, optimization, centrifugal fan, response surface methodology

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn