化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3041-3052.DOI: 10.16085/j.issn.1000-6613.2024-1146
• 专栏:化工生态环境前沿交叉新技术 • 上一篇
石秀顶1,2(
), 王永全3, 曾静3, 苏畅3, 洪俊明1,2(
)
收稿日期:2024-07-17
修回日期:2025-01-15
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
洪俊明
作者简介:石秀顶(1996—),男,博士研究生,研究方向为水污染处理工程。E-mail:2429462654@qq.com。
基金资助:
SHI Xiuding1,2(
), WANG Yongquan3, ZENG Jing3, SU Chang3, HONG Junming1,2(
)
Received:2024-07-17
Revised:2025-01-15
Online:2025-06-25
Published:2025-07-08
Contact:
HONG Junming
摘要:
过碳酸钠(SPC,Na2CO3·1.5H2O2)作为固体过氧化氢,近年来受到越来越多的关注。在此,通过简单的方法制备了具有丰富活性位点的纳米管状钴氮碳催化剂(Co-N-C),并用于活化SPC以有效去除四环素(TC)。通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)对材料形貌进行表征。通过X射线粉末衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)和X射线光电子能谱(XPS)分析元素分布和价态变化。表征结果表明合成了具有丰富活性位点的纳米管状Co-N-C。在TC浓度10mg/L,SPC浓度为2mmol/L,Co-N-C含量为0.2g/L,pH为7的条件下,在20min内几乎实现了TC的100%降解。自由基淬灭实验和EPR测试表明Co-N-C/SPC系统中的 ·OH、·CO3-和·O2-为TC降解的主要活性物质。反应前后钴元素价态变化以及Co2+/Co3+循环过程促进了SPC的活化,三维荧光光谱分析表明TC在Co-N-C/SPC体系中被降解。
中图分类号:
石秀顶, 王永全, 曾静, 苏畅, 洪俊明. 纳米管状Co-N-C活化过碳酸盐降解四环素[J]. 化工进展, 2025, 44(6): 3041-3052.
SHI Xiuding, WANG Yongquan, ZENG Jing, SU Chang, HONG Junming. Nanotubular Co-N-C activated percarbonate for tetracycline degradation[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3041-3052.
| 样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
|---|---|---|---|
| CNT | 50.14 | 0.13 | 5.50 |
| Co-N-C | 68.52 | 0.18 | 5.35 |
表1 不同样品的相对比表面积、平均孔容、平均孔径
| 样品 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 孔径/nm |
|---|---|---|---|
| CNT | 50.14 | 0.13 | 5.50 |
| Co-N-C | 68.52 | 0.18 | 5.35 |
| 催化剂 | 污染物 | 氧化剂 | 实验条件 | 反应时间/min | 去除率/% | 参考文献 |
|---|---|---|---|---|---|---|
| Fe3O4@α-MnO2 | RBK5 | PMS | Cat.=1.2g/L;PMS=4mmol/L;pH=7;RBK5=30mg/L | 60 | 91 | [ |
| Mn2O3@α-Fe3O4 | RBK5 | SPC | Cat.=0.3g/L;SPC=1mmol/L;pH=3;RBK5=10mg/L | 90 | 88 | [ |
| FeS2 | TC | SPC | Cat.=0.5g/L;SPC=8mmol/L;pH=5;TC=10mg/L | 60 | 78.86 | [ |
| Cu3(MoO4)2(OH)2 | OTC | SPC | Cat.=0.25g/L;SPC=0.2g/L;pH=3;TC=20mg/L | 40 | 80.01 | [ |
| CuCoFe-LDHs | CIP | SPC | Cat.=0.5g/L;SPC=0.3mmol/L;pH=5;CIP=20mg/L | 60 | 66 | [ |
| Co-N-C | TC | SPC | Cat.=0.2g/L;SPC=0.2mmol/L;pH=7;TC=10mg/L | 20 | 99.7 | 本文 |
表2 不同体系下污染物的降解效果
| 催化剂 | 污染物 | 氧化剂 | 实验条件 | 反应时间/min | 去除率/% | 参考文献 |
|---|---|---|---|---|---|---|
| Fe3O4@α-MnO2 | RBK5 | PMS | Cat.=1.2g/L;PMS=4mmol/L;pH=7;RBK5=30mg/L | 60 | 91 | [ |
| Mn2O3@α-Fe3O4 | RBK5 | SPC | Cat.=0.3g/L;SPC=1mmol/L;pH=3;RBK5=10mg/L | 90 | 88 | [ |
| FeS2 | TC | SPC | Cat.=0.5g/L;SPC=8mmol/L;pH=5;TC=10mg/L | 60 | 78.86 | [ |
| Cu3(MoO4)2(OH)2 | OTC | SPC | Cat.=0.25g/L;SPC=0.2g/L;pH=3;TC=20mg/L | 40 | 80.01 | [ |
| CuCoFe-LDHs | CIP | SPC | Cat.=0.5g/L;SPC=0.3mmol/L;pH=5;CIP=20mg/L | 60 | 66 | [ |
| Co-N-C | TC | SPC | Cat.=0.2g/L;SPC=0.2mmol/L;pH=7;TC=10mg/L | 20 | 99.7 | 本文 |
| pH | k/min-1 | R2 |
|---|---|---|
| 3 | 0.236 | 0.976 |
| 5 | 0.214 | 0.972 |
| 7 | 0.155 | 0.928 |
| 9 | 0.132 | 0.926 |
| 11 | 0.018 | 0.865 |
表3 不同pH下Co-N-C/SPC体系的降解动力学参数
| pH | k/min-1 | R2 |
|---|---|---|
| 3 | 0.236 | 0.976 |
| 5 | 0.214 | 0.972 |
| 7 | 0.155 | 0.928 |
| 9 | 0.132 | 0.926 |
| 11 | 0.018 | 0.865 |
| 时间/min | Co2+浸出/mg·L-1 |
|---|---|
| 3 | 0.046 |
| 5 | 0.078 |
| 10 | 0.083 |
| 15 | 0.097 |
| 20 | 0.103 |
表4 钴离子的浸出量
| 时间/min | Co2+浸出/mg·L-1 |
|---|---|
| 3 | 0.046 |
| 5 | 0.078 |
| 10 | 0.083 |
| 15 | 0.097 |
| 20 | 0.103 |
| [1] | LIN Zhong, CHEN Yijie, LI Gaoyang, et al. Change of tetracycline speciation and its impacts on tetracycline removal efficiency in vermicomposting with epigeic and endogeic earthworms[J]. Science of the Total Environment, 2023, 881: 163410. |
| [2] | YU Kan, LI Xiaoyong, QIU Yushu, et al. Low-dose effects on thyroid disruption in zebrafish by long-term exposure to oxytetracycline[J]. Aquatic Toxicology, 2020, 227: 105608. |
| [3] | HAN Chee-Hun, PARK Hee-Deung, KIM Song-Bae, et al. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment[J]. Water Research, 2020, 172: 115514. |
| [4] | HAN Q F, ZHAO S, ZHANG X R, et al. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China[J]. Environment International, 2020, 138: 105551. |
| [5] | LIU Xiaohui, LIU Ying, LU Shaoyong, et al. Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East Dongting Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 163: 145-152. |
| [6] | YU Xiaolong, JIN Xu, LI Meng, et al. Mechanism and security of UV driven sodium percarbonate for sulfamethoxazole degradation using DFT and metabolomic analysis[J]. Environmental Pollution, 2023, 323: 121352. |
| [7] | QI Juanjuan, LIU Juzhe, SUN Fengbin, et al. High active amorphous Co(OH)2 nanocages as peroxymonosulfate activator for boosting acetaminophen degradation and DFT calculation[J]. Chinese Chemical Letters, 2021, 32(5): 1814-1818. |
| [8] | CHEN Haoyun, YUAN Xingzhong, JIANG Longbo, et al. Intramolecular modulation of iron-based metal organic framework with energy level adjusting for efficient photocatalytic activity[J]. Applied Catalysis B: Environmental, 2022, 302: 120823. |
| [9] | Kwasi KYERE-YEBOAH, QIAO Xiuchen. Non-thermal plasma activated peroxide and percarbonate for tetracycline and oxytetracycline degradation: Synergistic performance, degradation pathways, and toxicity evaluation[J]. Chemosphere, 2023, 336: 139246. |
| [10] | XU Ximeng, ZHOU Yuhui, LI Shasha, et al. Activation of sodium percarbonate with Fe3O4@MXene composite for the efficient removal of bisphenol A[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108702. |
| [11] | MOHAMMADI Samira, MOUSSAVI Gholamreza, YAGHMAEIAN Kamyar, et al. Development of a percarbonate-enhanced vacuum UV process for simultaneous fluoroquinolone antibiotics removal and fecal bacteria inactivation under a continuous flow mode of operation[J]. Chemical Engineering Journal, 2022, 431: 134064. |
| [12] | LI Yangju, DONG Haoran, LI Long, et al. Efficient degradation of sulfamethazine via activation of percarbonate by chalcopyrite[J]. Water Research, 2021, 202: 117451. |
| [13] | LIAO Gaozu, QING Xiaojiao, XU Peng, et al. Synthesis of single atom cobalt dispersed on 2D carbon nanoplate and degradation of acetaminophen by peroxymonosulfate activation[J]. Chemical Engineering Journal, 2022, 427: 132027. |
| [14] | 张廷, 曾静, 叶校圳, 等. 纳米立方体PBA-Fe1Mn2活化过一硫酸盐降解偶氮有机物[J]. 中国环境科学, 2023, 43(7): 3533-3544. |
| ZHANG Ting, ZENG Jing, YE Xiaozhen, et al. Nanoscale PBA-Fe1Mn2 activated peroxymonosulfate for degradation of azo organic[J]. China Environmental Science, 2023, 43(7): 3533-3544. | |
| [15] | CHEN Shaona, LIANG Yanhua, LI Bo, et al. Facile synthesis of graphene oxide-supported CoO x nanoparticles for efficient degradation of antibiotics via percarbonate activation: Performance, degradation pathway and mechanism[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 131996. |
| [16] | YANG Zhao, WANG Zhaowei, LIANG Guiwei, et al. Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural manganese ore-cornstalk biochar composite activated peroxymonosulfate[J]. Chemical Engineering Journal, 2021, 426: 131777. |
| [17] | XU Baokang, ZHANG Xiao, ZHANG Yue, et al. Enhanced electron transfer-based nonradical activation of peroxymonosulfate by CoN x sites anchored on carbon nitride nanotubes for the removal of organic pollutants[J]. Chemical Engineering Journal, 2023, 466: 143155. |
| [18] | XU Haodan, JIANG Ning, WANG Da, et al. Improving PMS oxidation of organic pollutants by single cobalt atom catalyst through hybrid radical and non-radical pathways[J]. Applied Catalysis B: Environmental, 2020, 263: 118350. |
| [19] | GUO Xu, ZHANG Qicheng, HE Hongwei, et al. Wastewater flocculation substrate derived three-dimensional ordered macroporous Co single-atom catalyst for singlet oxygen-dominated peroxymonosulfate activation[J]. Applied Catalysis B: Environmental, 2023, 335: 122886. |
| [20] | XU Zhenyang, ZHANG Yimei, WANG Fei, et al. Co single-atom confined in N-doped hollow carbon sphere with superb stability for rapid degradation of organic pollutants[J]. Chemical Engineering Journal, 2023, 452: 139229. |
| [21] | 董正玉, 吴丽颖, 王霁, 等. 新型Fe3O4@α-MnO2活化过一硫酸盐降解水中偶氮染料[J]. 中国环境科学, 2018, 38(8): 3003-3010. |
| DONG Zhengyu, WU Liying, WANG Ji, et al. Novel Fe3O4@α-MnO2 activated peroxymonosulfate degradation of azo dyes in aqueous solution[J]. China Environmental Science, 2018, 38(8): 3003-3010. | |
| [22] | 徐铭骏, 郭兆春, 李立, 等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2): 1043-1053. |
| XU Mingjun, GUO Zhaochun, LI Li, et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1043-1053. | |
| [23] | GUO Liu, NIE Ziqiu, WEN Lijia, et al. Insights into the effects of natural pyrite-activated sodium percarbonate on tetracycline removal from groundwater: Mechanism, pathways, and column studies[J]. Science of the Total Environment, 2023, 902: 165883. |
| [24] | JIN Xiaotao, WANG Yanlan, HUANG Yingping, et al. Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism[J]. Chinese Chemical Letters, 2024, 35(10): 109499. |
| [25] | CHEN Kang, LI Ting, ZHANG Xue, et al. CuCoFe-LDHs activated sodium percarbonate (SPC) for the degradation of ciprofloxacin[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 110651. |
| [26] | WU Liying, ZHANG Qian, HONG Junming, et al. Degradation of bisphenol A by persulfate activation via oxygen vacancy-rich CoFe2O4- x [J]. Chemosphere, 2019, 221: 412-422. |
| [27] | DUAN Xiaoguang, SU Chao, ZHOU Li, et al. Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds[J]. Applied Catalysis B: Environmental, 2016, 194: 7-15. |
| [28] | LIN Kun-Yi Andrew, LIN Jyun-Ting, LIN Yifeng. Heterogeneous catalytic activation of percarbonate by ferrocene for degradation of toxic amaranth dye in water[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78: 144-149. |
| [29] | BAI Rui, YAN Weifu, XIAO Yong, et al. Acceleration of peroxymonosulfate decomposition by a magnetic MoS2/CuFe2O4 heterogeneous catalyst for rapid degradation of fluoxetine[J]. Chemical Engineering Journal, 2020, 397: 125501. |
| [30] | SHAH Noor S, KHAN Javed Ali, SAYED Murtaza, et al. Hydroxyl and sulfate radical mediated degradation of ciprofloxacin using nano zerovalent manganese catalyzed S2O8 2- [J]. Chemical Engineering Journal, 2019, 356: 199-209. |
| [31] | WANG Jianlong, WANG Shizong. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal, 2021, 411: 128392. |
| [32] | 廖兵, 胥雯, 叶秋月. 活化过碳酸盐及过氧碳酸氢盐在水处理领域中的研究进展[J]. 化工进展, 2022, 41(6): 3235-3248. |
| LIAO Bing, XU Wen, YE Qiuyue. A review of activated percarbonate and peroxymonocarbonate in the field of water treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3235-3248 | |
| [33] | MO Zhihua, TAN Zexing, LIANG Jialin, et al. Iron-rich sludge biochar triggers sodium percarbonate activation for robust sulfamethoxazole removal: Collaborative roles of reactive oxygen species and electron transfer[J]. Chemical Engineering Journal, 2023, 457: 141150. |
| [34] | LI Li, GUO Ruoning, ZHANG Sai, et al. Sustainable and effective degradation of aniline by sodium percarbonate activated with UV in aqueous solution: Kinetics, mechanism and identification of reactive species[J]. Environmental Research, 2022, 207: 112176. |
| [35] | ASIF Abdul Hannan, RAFIQUE Nasir, HIRANI Rajan Arjan Kalyan, et al. Heterogeneous activation of peroxymonosulfate by Co-doped Fe2O3 nanospheres for degradation of p-hydroxybenzoic acid[J]. Journal of Colloid and Interface Science, 2021, 604: 390-401. |
| [36] | SHE Yuecheng, WEI Wenxuan, AI Xiaohuan, et al. Synergistic pretreatment of CaO and freezing/thawing to enhance volatile fatty acids recycling and dewaterability of waste activated sludge via anaerobic fermentation[J]. Chemosphere, 2021, 280: 130939. |
| [1] | 宋祎祺, 李雪, 叶茂, 刘中民. 基于格子Boltzmann方法的吸热反应双颗粒沉降模拟[J]. 化工进展, 2025, 44(5): 2984-2996. |
| [2] | 戴月明, 周梅芳, 沈建华, 姜海波, 李春忠. TiO2纳米颗粒烧结机制分子动力学模拟[J]. 化工进展, 2025, 44(4): 2202-2214. |
| [3] | 王沛淦, 李乐利, 谢颂专, 宋冰冰, 孔巧平, 刘改革, 麻微微, 施雪卿. 污泥基FeCa-ALE复合材料对磷酸盐的吸附机制[J]. 化工进展, 2025, 44(4): 2365-2373. |
| [4] | 金志浩, 王云帆, 田振玉. 火箭发动机尾焰复燃反应动力学分析策略[J]. 化工进展, 2025, 44(3): 1776-1780. |
| [5] | 冯鹏, 徐东海, 何冰, 刘欢腾, 杨立杰, 王攀, 刘青山. 亚/超临界水中典型硫酸盐Na2SO4和K2SO4的溶解特性及机理[J]. 化工进展, 2025, 44(3): 1706-1715. |
| [6] | 左骥, 罗莉, 谢永锴, 陈文尧, 钱刚, 周兴贵, 段学志. 甲醇无氧脱氢制甲醛Cu催化剂的粒径效应[J]. 化工进展, 2025, 44(3): 1347-1354. |
| [7] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [8] | 赵鹬, 石翎, 张栋强, 李宁. 沉淀法合成氧化镁吸附剂及其对氟化物的吸附机理[J]. 化工进展, 2025, 44(2): 971-981. |
| [9] | 林梅, 雷雨, 李萍, 张强. 石墨烯/橡胶复合改性沥青-集料界面黏附性能及机理[J]. 化工进展, 2025, 44(2): 991-1002. |
| [10] | 李琢宇, 余美琪, 陈孝彦, 胡若晖, 王庆宏, 陈春茂, 詹亚力. 炼油废催化剂吸附去除水中硝基苯的特性与机制[J]. 化工进展, 2025, 44(2): 1076-1087. |
| [11] | 赵丽阳, 李倩, 何佩熹, 潘鸿辉, 刘艳, 刘细祥. 磷钼酸-Fe3O4球磨共改性污泥基生物炭对四环素的吸附特性[J]. 化工进展, 2025, 44(1): 583-595. |
| [12] | 张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201. |
| [13] | 游小银, 汪楚乔, 刘才华, 彭小明. Z型CN/NGBO/BV催化剂体系的构筑及光类芬顿降解四环素性能[J]. 化工进展, 2025, 44(1): 286-296. |
| [14] | 李依梦, 陈运全, 何畅, 张冰剑, 陈清林. 基于物理信息神经网络的甲烷无氧芳构化反应的正反问题[J]. 化工进展, 2024, 43(9): 4817-4823. |
| [15] | 何海霞, 万亚萌, 李帆帆, 牛心雨, 张静雯, 李涛, 任保增. 盐酸萘甲唑啉在甲醇-乙酸乙酯体系中的动力学及结晶工艺[J]. 化工进展, 2024, 43(8): 4230-4245. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |