| 1 |
LIN Shanfan, ZHI Yuchun, LIU Zhiqiang, et al. Multiscale dynamical cross-talk in zeolite-catalyzed methanol and dimethyl ether conversions[J]. National Science Review, 2022, 9(9): nwac151.
|
| 2 |
TIAN Peng, WEI Yingxu, YE Mao, et al. Methanol to olefins (MTO): From fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938.
|
| 3 |
VOGT Eelco, WECKHUYSEN Bert M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7342-7370.
|
| 4 |
CHEN Meng, CHEN Zhao, TANG Yaping, et al. CFD-DEM simulation of particle coating process coupled with chemical reaction flow model[J]. International Journal of Chemical Reactor Engineering, 2021, 19(4): 393-413.
|
| 5 |
ZHU Litao, PAN Hui, SU Yuanhai, et al. Effect of particle polydispersity on flow and reaction behaviors of methanol-to-olefins fluidized bed reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(4): 1090-1102.
|
| 6 |
ZHANG Jingyuan, LU Bona, CHEN Feiguo, et al. Simulation of a large methanol-to-olefins fluidized bed reactor with consideration of coke distribution[J]. Chemical Engineering Science, 2018, 189: 212-220.
|
| 7 |
HU Dongfang, HAN Guodong, LUNGU Musango, et al. Experimental investigation of bubble and particle motion behaviors in a gas-solid fluidized bed with side wall liquid spray[J]. Advanced Powder Technology, 2017, 28(9): 2306-2316.
|
| 8 |
JOSEPH Daniel D, FORTES Antonio F, LUNDGREN T P, et al. Nonlinear mechanics of fluidization of spheres, cylinders, and disks in water[J]. Physics of Fluids, 1987, 30(9): 2599-2599.
|
| 9 |
FENG James J, HU Howard H, JOSEPH Daniel D. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid Part 1. Sedimentation[J]. Journal of Fluid Mechanics, 1994, 261: 95-134.
|
| 10 |
AIDUN Cyrus K, DING E Jiang. Dynamics of particle sedimentation in a vertical channel: Period-doubling bifurcation and chaotic state[J]. Physics of Fluids, 2003, 15(6): 1612-1621.
|
| 11 |
NIE Deming, LIN Jianzhong, GAO Qi. Settling behavior of two particles with different densities in a vertical channel[J]. Computers & Fluids, 2017, 156: 353-367.
|
| 12 |
GHOSH Sudeshna, KUMAR Manish. Study of drafting, kissing and tumbling process of two particles with different sizes and densities using immersed boundary method in a confined medium[J]. Applied Mathematics and Computation, 2020, 386: 125411.
|
| 13 |
GAN Hui, CHANG Jianzhong, FENG James J, et al. Direct numerical simulation of the sedimentation of solid particles with thermal convection[J]. Journal of Fluid Mechanics, 2003, 481: 385-411.
|
| 14 |
FENG Zhigang, MICHAELIDES Efstathios E. Inclusion of heat transfer computations for particle laden flows[J]. Physics of Fluids, 2008, 20(4): 040604.
|
| 15 |
ESHGHINEJADFARD A, THÉVENIN D. Numerical simulation of heat transfer in particulate flows using a thermal immersed boundary lattice Boltzmann method[J]. International Journal of Heat and Fluid Flow, 2016, 60: 31-46.
|
| 16 |
YANG Bo, CHEN Sheng, CAO Chuansheng, et al. Lattice Boltzmann simulation of two cold particles settling in Newtonian fluid with thermal convection[J]. International Journal of Heat and Mass Transfer, 2016, 93: 477-490.
|
| 17 |
LIU Ming, SHEN Zhongjie, LIANG Qinfeng, et al. Particle fluctuating motions induced by gas-solid phase reaction[J]. Chemical Engineering Journal, 2020, 388: 124348.
|
| 18 |
ZHANG Hancong, LUO Kun, HAUGEN Nils Erland L, et al. Drag force for a burning particle[J]. Combustion and Flame, 2020, 217: 188-199.
|
| 19 |
Zhisong OU, GUO Liejin, CHI Cheng, et al. Interface-resolved direct numerical simulations of interphase momentum, heat, and mass transfer in supercritical water gasification of coal[J]. Physics of Fluids, 2022, 34(10): 103319.
|
| 20 |
ZHAO Zelin, XU Zhiguo. Direct simulation on particle sedimentation mechanisms in corrosive liquids[J]. Powder Technology, 2022, 404: 117503.
|
| 21 |
LI Like, MEI Renwei, KLAUSNER James F. Boundary conditions for thermal lattice Boltzmann equation method[J]. Journal of Computational Physics, 2013, 237: 366-395.
|
| 22 |
LI Like, MEI Renwei, KLAUSNER James F. Lattice Boltzmann models for the convection-diffusion equation: D2Q5 vs D2Q9[J]. International Journal of Heat and Mass Transfer, 2017, 108: 41-62.
|
| 23 |
HUANG Rongzong, WU Huiying. A modified multiple-relaxation-time lattice Boltzmann model for convection-diffusion equation[J]. Journal of Computational Physics, 2014, 274: 50-63.
|
| 24 |
GLOWINSKI R, PAN T W, HESLA T I, et al. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: Application to particulate flow[J]. Journal of Computational Physics, 2001, 169(2): 363-426.
|
| 25 |
FENG Zhigang, MICHAELIDES Efstathios E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195(2): 602-628.
|
| 26 |
RAHMAN NEZHAD Javad, Ali MIRBOZORGI Seyed. An immersed boundary-lattice Boltzmann method to simulate chaotic micromixers with baffles[J]. Computers & Fluids, 2018, 167: 206-214.
|
| 27 |
REN Weiwei, SHU Chang, YANG Wenming. An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2013, 64: 694-705.
|
| 28 |
KANG Qinjun, LICHTNER Peter C, ZHANG Dongxiao. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05203.
|
| 29 |
MOLINS Sergi, SOULAINE Cyprien, PRASIANAKIS Nikolaos I, et al. Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches and benchmark problem set[J]. Computational Geosciences, 2021, 25(4): 1285-1318.
|