化工进展 ›› 2025, Vol. 44 ›› Issue (4): 1998-2007.DOI: 10.16085/j.issn.1000-6613.2024-0500
王佳琪(
), 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤(
)
收稿日期:2024-03-27
修回日期:2024-07-27
出版日期:2025-04-25
发布日期:2025-05-07
通讯作者:
葛坤
作者简介:王佳琪(1988—),女,副教授,博士生导师,研究方向为多孔介质渗流及传热传质机理。E-mail:jiaqiwang@hrbeu.edu.cn。
基金资助:
WANG Jiaqi(
), LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun(
)
Received:2024-03-27
Revised:2024-07-27
Online:2025-04-25
Published:2025-05-07
Contact:
GE Kun
摘要:
气体水合物技术在海水淡化、水合物蓄冷、CO2封存等领域有着广阔的应用前景,水合物生成速度缓慢是制约水合物技术应用的关键问题之一。本文利用自主搭建的CO2水合物可视化生成实验装置进行鼠李糖脂强化CO2水合物生成的实验研究,分析鼠李糖脂对CO2水合物生成过程中耗气量、诱导时间及形态学图像的影响。结果表明,与纯水相比,鼠李糖脂溶液中气体消耗量增加了4.47mmol/mol,且诱导时间缩短了260min。对不同质量分数的鼠李糖脂溶液中CO2水合物生成特性进行研究发现,0.2%的鼠李糖脂溶液中水合物生成的诱导时间最短,质量分数持续增大会抑制水合物的生成。初始温度升高导致过冷度降低,CO2水合物耗气量随之减少,认为体系内的诱导时间与初始温度变化存在一定的线性关系。初始压力的增大,缩短了诱导时间但降低了水合物生成量。不同生成条件下的鼠李糖脂溶液中CO2水合物生成过程中形态学图像存在差异。
中图分类号:
王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007.
WANG Jiaqi, LIU Jiaxing, WEI Haoqi, ZHOU Xinlin, CHENG Chuanxiao, GE Kun. Rhamnolipid-enhanced CO2 hydrate production[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 1998-2007.
| 不同质量分数溶液 | 去离子水体积/mL | 溶质质量/g |
|---|---|---|
| 0.2%十二烷基硫酸钠溶液 | 50 | 0.1 |
| 0.05%鼠李糖脂溶液 | 50 | 0.025 |
| 0.1%鼠李糖脂溶液 | 50 | 0.05 |
| 0.2%鼠李糖脂溶液 | 50 | 0.1 |
| 0.4%鼠李糖脂溶液 | 50 | 0.2 |
| 0.6%鼠李糖脂溶液 | 50 | 0.3 |
| 0.8%鼠李糖脂溶液 | 50 | 0.4 |
表1 配制溶液所需实验材料用量
| 不同质量分数溶液 | 去离子水体积/mL | 溶质质量/g |
|---|---|---|
| 0.2%十二烷基硫酸钠溶液 | 50 | 0.1 |
| 0.05%鼠李糖脂溶液 | 50 | 0.025 |
| 0.1%鼠李糖脂溶液 | 50 | 0.05 |
| 0.2%鼠李糖脂溶液 | 50 | 0.1 |
| 0.4%鼠李糖脂溶液 | 50 | 0.2 |
| 0.6%鼠李糖脂溶液 | 50 | 0.3 |
| 0.8%鼠李糖脂溶液 | 50 | 0.4 |
| 1 | 周诗岽, 陈小康, 边慧, 等. CO2水合物在管道中的生成及堵塞特性[J]. 化工进展, 2018, 37 (11): 4250-4256. |
| ZHOU Shidong, CHEN Xiaokang, BIAN Hui, et al. CO2 hydrate formation in pipeline and its plugging characteristics[J]. Chemical Industry and Engineering Progress, 2018, 37 (11): 4250-4256. | |
| 2 | TAKEYA S, KIDA M, MINAMI H, et al. Structure and thermal expansion of natural gas clathrate hydrates[J]. Chemical Engineering Science, 2006, 61(8): 2670-2674. |
| 3 | THAKRE Niraj, JANA Amiya K. Physical and molecular insights to clathrate hydrate thermodynamics[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110150. |
| 4 | SAJI A, YOSHIDA H, SAKAI M, et al. Fixation of carbon dioxide by clathrate-hydrate[J]. Energy Conversion and Management, 1992, 33(5/6/7/8): 643-649. |
| 5 | TAJIMA Hideo, YAMASAKI Akihiro, KIYONO Fumio. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation[J]. Energy, 2004, 29(11): 1713-1729. |
| 6 | BREWER Peter G, PELTZER Edward T, FRIEDERICH Gernot, et al. Experiments on the ocean sequestration of fossil fuel CO2: pH measurements and hydrate formation[J]. Marine Chemistry, 2000, 72(2/3/4): 83-93. |
| 7 | GABITTO Jorge, TSOURIS Costas. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters[J]. Energy Conversion and Management, 2006, 47(5): 494-508. |
| 8 | YAMASAKI A, WAKATSUKI M, TENG H, et al. A new ocean disposal scenario for anthropogenic CO2: CO2 hydrate formation in a submerged crystallizer and its disposal[J]. Energy, 2000, 25(1): 85-96. |
| 9 | NISHIKAWA Nobuyuki, MORISHITA Masao, UCHIYAMA Motoshi, et al. CO2 clathrate formation and its properties in the simulated deep ocean[J]. Energy Conversion and Management, 1992, 33(5/6/7/8): 651-657. |
| 10 | WANG Xiaolin, ZHANG Fengyuan, Wojciech LIPIŃSKI. Research progress and challenges in hydrate-based carbon dioxide capture applications[J]. Applied Energy, 2020, 269: 114928. |
| 11 | SINEHBAGHIZADEH Saeid, SAPTORO Agus, MOHAMMADI Amir H. CO2 hydrate properties and applications: A state of the art[J]. Progress in Energy and Combustion Science, 2022, 93: 101026. |
| 12 | 刘妮, 张国昌, R E 罗杰斯. 二氧化碳气体水合物生成特性的实验研究[J]. 上海理工大学学报, 2007, 29(4): 405-408. |
| LIU Ni, ZHANG Guochang, Rogers R E. Experimental study of CO2 gas hydrates formation[J]. Journal of University of Shanghai for Science and Technology, 2007, 29(4): 405-408. | |
| 13 | SHI Changrui, CHAI Fengyuan, YANG Mingjun, et al. Enhance methane hydrate formation using fungus confining sodium dodecyl sulfate solutions for methane storage[J]. Journal of Molecular Liquids, 2021, 333: 116020. |
| 14 | LEE So Young, KIM Hyoung Chan, LEE JU Dong. Morphology study of methane-propane clathrate hydrates on the bubble surface in the presence of SDS or PVCap[J]. Journal of Crystal Growth, 2014, 402: 249-259. |
| 15 | 王帅, 杜胜男, 刘胜利, 等. 促进天然气水合物形成的影响因素分析[J]. 当代化工, 2016, 45(2): 367-369, 372. |
| WANG Shuai, DU Shengnan, LIU Shengli, et al. Analysis of factors of promoting natural gas hydrate formation[J]. Contemporary Chemical Industry, 2016, 45(2): 367-369, 372. | |
| 16 | HE Yan, SUN Mengting, CHEN Chen, et al. Surfactant-based promotion to gas hydrate formation for energy storage[J]. Journal of Materials Chemistry A, 2019, 7(38): 21634-21661. |
| 17 | 李玉星, 朱超, 王武昌. 表面活性剂促进CO2水合物生成的实验及动力学模型[J]. 石油化工, 2012, 41(6): 699-703. |
| LI Yuxing, ZHU Chao, WANG Wuchang. Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics[J]. Petrochemical Technology, 2012, 41(6): 699-703. | |
| 18 | 王树立, 代文杰, 刘墨夫, 等. 鼠李糖脂促进CO2水合物生成实验[J]. 常州大学学报(自然科学版), 2017, 29(4): 66-72. |
| WANG Shuli, DAI Wenjie, LIU Mofu, et al. Experimental research on CO2 hydrate formation promoted by rhamnolipid[J]. Journal of Changzhou University (Natural Science Edition), 2017, 29(4): 66-72. | |
| 19 | 吴虹, 汪薇, 韩双艳. 鼠李糖脂生物表面活性剂的研究进展[J]. 微生物学通报, 2007, 34(1): 148-152. |
| WU Hong, WANG Wei, HAN Shuangyan. Recent progress on rhamnolipid biosurfactant[J]. Microbiology China, 2007, 34(1): 148-152. | |
| 20 | 王冬梅, 陈丽华, 周立辉, 等. 鼠李糖脂对微生物菌剂降解石油的影响[J]. 环境工程学报, 2013, 7(10): 4121-4126. |
| WANG Dongmei, CHEN Lihua, ZHOU Lihui, et al. Effects of rhamnolipid on petroleum degradation of compound microbial inoculant[J]. Chinese Journal of Environmental Engineering, 2013, 7(10): 4121-4126. | |
| 21 | 丁莹. 鼠李糖脂表面活性剂的制备及其对微生物降解苯酚的影响[D]. 长沙: 湖南大学, 2010. |
| DING Ying. Preparation of rhamnolipid surfactant and its effect on microbial degradation of phenol[D]. Changsha: Hunan University, 2010. | |
| 22 | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 2版. 北京: 化学工业出版社, 2020. |
| CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. 2nd ed. Beijing: Chemical Industry Press, 2020. | |
| 23 | ZHONG Dongliang, WANG Jiale, LU Yiyu, et al. Precombustion CO2 capture using a hybrid process of adsorption and gas hydrate formation[J]. Energy, 2016, 102: 621-629. |
| 24 | PENG Dingyu, ROBINSON Donald B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
| 25 | STRYJEK R, VERA J H. PRSV2: A cubic equation of state for accurate vapor-liquid equilibria calculations[J]. The Canadian Journal of Chemical Engineering, 1986, 64(5): 820-826. |
| 26 | STRYJEK R, VERA J H. PRSV: An improved Peng-Robinson equation of state for pure compounds and mixtures[J]. The Canadian Journal of Chemical Engineering, 1986, 64(2): 323-333. |
| 27 | MOHAMMADI Abolfazl, MANTEGHIAN Mehrdad, HAGHTALAB Ali, et al. Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS[J]. Chemical Engineering Journal, 2014, 237: 387-395. |
| 28 | KLAUDA Jeffery B, SANDLER Stanley I. A fugacity model for gas hydrate phase equilibria[J]. Industrial & Engineering Chemistry Research, 2000, 39(9): 3377-3386. |
| 29 | 饶永超, 王树立, 黄俊尧, 等. GO/鼠李糖脂复配体系下CO2水合物生成实验及逸度模型研究[J]. 实验室研究与探索, 2022, 41(11): 6-12. |
| RAO Yongchao, WANG Shuli, HUANG Junyao, et al. Experimental study and fugacity model CO2 on hydrate formation promoted by graphene oxide compounded with rhamnolipid[J]. Research and Exploration in Laboratory, 2022, 41(11): 6-12. | |
| 30 | 张炜, 李昊阳, 徐纯刚, 等. 气体水合物生成微观机理及分析方法研究进展[J]. 化工学报, 2022, 73(9): 3815-3827. |
| ZHANG Wei, LI Haoyang, XU Chungang, et al. Research progress on the microscopic mechanism and analytical methods of gas hydrate formation[J]. CIESC Journal, 2022, 73(9): 3815-3827. | |
| 31 | LI Zheng, ZHONG Dongliang, LU Yiyu, et al. Preferential enclathration of CO2 into tetra-n-butyl phosphonium bromide semiclathrate hydrate in moderate operating conditions: Application for CO2 capture from shale gas[J]. Applied Energy, 2017, 199: 370-381. |
| [1] | 丁红兵, 柴旭天, 王世伟, 宋鑫宇, 孙宏军. 单液滴与多液滴撞击流动液膜的实验探究[J]. 化工进展, 2025, 44(4): 1888-1897. |
| [2] | 王磊, 王艳, 甘玉凤, 罗凯, 费华, 栾俨丁. 水平流向不同小流道加热管内超临界CO2的传热特性[J]. 化工进展, 2025, 44(4): 1945-1956. |
| [3] | 袁梦丽, 宋云彩, 李文英, 冯杰. 光热驱动褐煤固定床气化过程热质传递规律[J]. 化工进展, 2025, 44(4): 2008-2019. |
| [4] | 王美杰, 韦刘轲, 贾保印, 蓝兴英, 高金森, 石孝刚. LNG开架式气化器传热强化的研究进展[J]. 化工进展, 2025, 44(3): 1206-1217. |
| [5] | 佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252. |
| [6] | 张喆, 纪献兵, 杨聿昊, 刘家璇, 姚泊丞. 多尺度结构烧结沟槽表面沸腾传热性能[J]. 化工进展, 2025, 44(2): 669-676. |
| [7] | 王思懿, 许建良, 代正华, 武国义, 王辅臣. 多晶硅还原炉气相沉积反应数值模拟[J]. 化工进展, 2025, 44(2): 706-716. |
| [8] | 李昊阳, 李洪伟, 谭建宇. 瞬态振荡加热条件下沸腾气泡运动特性[J]. 化工进展, 2025, 44(2): 735-742. |
| [9] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [10] | 蔡楷楠, 陈健勇, 陈颖, 罗向龙, 梁颖宗, 何嘉诚. 非共沸工质在分液板式冷凝器中的热力性能[J]. 化工进展, 2025, 44(1): 48-56. |
| [11] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
| [12] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
| [13] | 张青, 黄理浩, 陶乐仁, 朱天意, 金云飞. R513A在不同肋结构水平管内的流动沸腾换热性能[J]. 化工进展, 2024, 43(S1): 134-143. |
| [14] | 苏瑶, 陈占秀, 杨历, 邢赫威, 呼和仓, 李源华. 热源温度对非对称纳米通道流动换热的影响[J]. 化工进展, 2024, 43(S1): 144-153. |
| [15] | 崔祎, 李孟原, 杨路, 李海东, 张奇琪, 常承林, 王彧斐. 采用扭曲片内插件的管壳式换热器自动设计新方法[J]. 化工进展, 2024, 43(9): 4824-4832. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |