| 1 |
郑津洋, 刘自亮, 花争立, 等. 氢安全研究现状及面临的挑战[J]. 安全与环境学报, 2020, 20(1): 106-115.
|
|
ZHENG Jinyang, LIU Ziliang, HUA Zhengli, et al. Research status-in-situ and key challenges in hydrogen safety[J]. Journal of Safety and Environment, 2020, 20(1): 106-115.
|
| 2 |
张盛, 郑津洋, 戴剑锋, 王昕, 李浩然. 可再生能源大规模制氢及储氢系统研究进展[J]. 太阳能学报, 2024, 45(1): 457-465.
|
|
ZHANG Sheng, ZHENG Jinyang, DAI Jianfeng, et al. Research progress on renewable energy system coupled with large-scale hydrogen production and storage[J]. Acta Energiae Solaris Sinica, 2024, 45(1): 457-465.
|
| 3 |
HUANG Ying, ZHOU Yi, ZHONG Ruohan, et al. Hydrogen energy development in China: Potential assessment and policy implications[J]. International Journal of Hydrogen Energy, 2024, 49: 659-669.
|
| 4 |
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges, and prospects of hydrogen energy[J]. Natural Gas Industry B, 2022, 9(5): 427-447.
|
| 5 |
韩笑, 张兴华, 闫华光, 等. 全球氢能产业政策现状与前景展望[J]. 电力信息与通信技术, 2021, 19(12): 27-34.
|
|
HAN Xiao, ZHANG Xinghua, YAN Huaguang, et al. Current situation and prospect of global hydrogen energy industry policy[J]. Electric Power Information and Communication Technology, 2021, 19(12): 27-34.
|
| 6 |
SAMPSON Joanna. Hydrogen insights 2024[EB/OL].Hydrogen Council. (2024-09-17). .
|
| 7 |
曹湘洪, 魏志强. 氢能利用安全技术研究与标准体系建设思考[J]. 中国工程科学, 2020, 22(5): 144-151.
|
|
CAO Xianghong, WEI Zhiqiang. Technologies for the safe use of hydrogen and construction of the safety standards system[J]. Strategic Study of CAE, 2020, 22(5): 144-151.
|
| 8 |
SUN Binhan, ZHAO Huan, DONG Xizhen, et al. Current challenges in the utilization of hydrogen energy—A focused review on the issue of hydrogen-induced damage and embrittlement[J]. Advances in Applied Energy, 2024, 14: 100168.
|
| 9 |
SUN Binhan, WANG Dong, LU Xu, et al. Current challenges and opportunities toward understanding hydrogen embrittlement mechanisms in advanced high-strength steels: A review[J]. Acta Metallurgica Sinica (English Letters), 2021, 34: 741-754.
|
| 10 |
石荣建, 乔利杰, 庞晓露. 氢加剧腐蚀的研究以及高强韧抗氢钢的开发[C]//中国金属学会. 第十三届中国钢铁年会论文集(摘要)——大会特邀报告&分会场特邀报告. 北京:2022:89-90.
|
|
SHI Rongjian, QIAO Lijie, PANG Xiaolu. Fundamental principles of hydrogen exacerbated metal corrosion and atomic-scale investigation of hydrogen embrittlement resistant high-strength steels[C]//Chinese Society for Metals. Proceedings of the 13th Annual Conference of China Iron and Steel (Abstract)—Invited Conference Presentations & Sessions Invited Presentations, 2022: 89-90.
|
| 11 |
JOHNSON William H. On some remarkable changes produced in iron and steel by the action of hydrogen and acids[J]. Nature, 1875, 11(281): 393-393.
|
| 12 |
INTERRANTE C, PRESSOUYRE G, Creusot-Loire. Current solutions to hydrogen problems in steels: Proceedings of the first international conference on current solutions to hydrogen problems in steels[C]. Washington DC, 1982.
|
| 13 |
任学冲, 褚武扬, 李金许, 等. 车轮钢中的白点及其断口形貌研究[J]. 金属学报, 2006, 42(3): 273-279.
|
|
REN Xuechong, CHU Wuyang, LI Jinxu, et al. Research of flaking and its fractography in a wheel steel[J]. Acta Metallurgica Sinica, 2006, 42(3): 273-279.
|
| 14 |
王佳, 刘晓勇, 高灵清, 等. 钛合金氢致损伤机理的研究现状[J]. 材料保护, 2020, 53(11): 98-105.
|
|
WANG Jia, LIU Xiaoyong, GAO Lingqing, et al. A review on mechanisms of hydrogen embrittlement of titanium alloys[J]. Materials Protection, 2020, 53(11): 98-105.
|
| 15 |
POORHAYDARI Kioumars. A comprehensive examination of high-temperature hydrogen attack—A review of over a century of investigations[J]. Journal of Materials Engineering and Performance, 2021, 30(11): 7875-7908.
|
| 16 |
陈炜, 陈学东, 顾望平, 等. 加氢装置高温氢损伤机理与风险分析[J]. 腐蚀与防护, 2019, 40(8): 623-626.
|
|
CHEN Wei, CHEN Xuedong, GU Wangping, et al. Mechanism of high temperature hydrogen damage and risk analysis to hydrogenation units[J]. Corrosion & Protection, 2019, 40(8): 623-626.
|
| 17 |
DUTTON R, NUTTALL K, PULS M P, et al. Mechanisms of hydrogen induced delayed cracking in hydride forming materials[J]. Metallurgical Transactions A, 1977, 8(10): 1553-1562.
|
| 18 |
SUN Binhan, KRIEGER Waldemar, ROHWERDER Michael, et al. Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels[J]. Acta Materialia, 2020, 183: 313-328.
|
| 19 |
MARTIN May L, DADFARNIA Mohsen, NAGAO Akihide, et al. Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials[J]. Acta Materialia, 2019, 165: 734-750.
|
| 20 |
LYNCH Stan. Mechanistic and fractographic aspects of stress corrosion cracking[J]. Corrosion Reviews, 2012, 30(3/4): 63-104.
|
| 21 |
TAKAHASHI Yoshimasa, KONDO Hikaru, ASANO Ryo, et al. Direct evaluation of grain boundary hydrogen embrittlement: A micro-mechanical approach[J]. Materials Science and Engineering: A, 2016, 661: 211-216.
|
| 22 |
NEERAJ T, SRINIVASAN R, LI Ju. Hydrogen embrittlement of ferritic steels: Observations on deformation microstructure, nanoscale dimples and failure by nanovoiding[J]. Acta Materialia, 2012, 60(13/14): 5160-5171.
|
| 23 |
LYNCH S P. Mechanisms and kinetics of environmentally assisted cracking: Current status, issues, and suggestions for further work[J]. Metallurgical and Materials Transactions A, 2013, 44(3): 1209-1229.
|
| 24 |
LYNCH S P. 2-Hydrogen embrittlement (HE) phenomena and mechanisms[M]//Raja V S, Shoji Tetsuo. Stress Corrosion Cracking. Cambridge: Woodhead Publishing, 2011: 90-130.
|
| 25 |
DONG Xizhen, WANG Dong, Prithiv THOUDDEN-SUKUMAR, et al. Hydrogen-associated decohesion and localized plasticity in a high-Mn and high-Al two-phase lightweight steel[J]. Acta Materialia, 2022, 239: 118296.
|
| 26 |
陈瑞, 郑津洋, 徐平, 等. 金属材料常温高压氢脆研究进展[J]. 太阳能学报, 2008, 29(4): 502-508.
|
|
CHEN Rui, ZHENG Jinyang, XU Ping, et al. Hydrogen embrittlement of metallic materials in high-pressure hydrogen at normal temperature[J]. Acta Energiae Solaris Sinica, 2008, 29(4): 502-508.
|
| 27 |
郑津洋, 周池楼, 徐平, 等. 高压氢环境材料耐久性测试装置的研究进展[J]. 太阳能学报, 2013, 34(8): 1477-1483.
|
|
ZHENG Jinyang, ZHOU Chilou, XU Ping, et al. R & d of materials testing equipment in high-pressure hydrogen[J]. Acta Energiae Solaris Sinica, 2013, 34(8): 1477-1483.
|
| 28 |
YANG M Z, LUO J L, YANG Q, et al. Effects of hydrogen on semiconductivity of passive films and corrosion behavior of 310 stainless steel[J]. Journal of the Electrochemical Society, 1999, 146(6): 2107-2112.
|
| 29 |
CHEN Lin, XIONG Xilin, TAO Xuan, et al. Effect of dislocation cell walls on hydrogen adsorption, hydrogen trapping and hydrogen embrittlement resistance[J]. Corrosion Science, 2020, 166: 108428.
|
| 30 |
ZHENG Jinyang, LIU Xianxin, XU Ping, et al. Development of high pressure gaseous hydrogen storage technologies[J]. International journal of hydrogen energy, 2012, 37(1): 1048-1057.
|
| 31 |
CHEN Xuedong, FAN Zhichao, XU Shuangqing, et al. Technological progress on safety assurance for hydrogen storage and transportation pressure equipments in China[C]//Volume 1: Codes and Standards. Las Vegas, Nevada, USA: American Society of Mechanical Engineers, 2022: V001T01A071.
|
| 32 |
FENG Yufeng, WU Yingzhe, KUANG Jiyong, et al. Development of material mechanical properties testing platform for liquid hydrogen temperature zone[C]//Volume 4B: Materials and Fabrication. Las Vegas, Nevada, USA: American Society of Mechanical Engineers, 2022: V04BT06A029.
|
| 33 |
KOYAMA Motomichi, ROHWERDER Michael, TASAN Cemal Cem, et al. Recent progress in microstructural hydrogen mapping in steels: Quantification, kinetic analysis, and multi-scale characterisation[J]. Materials Science and Technology, 2017, 33(13): 1481-1496.
|
| 34 |
XIE D, LI S, LI M, et al. Hydrogenated vacancies lock dislocations in aluminium[J]. Nature Communications, 2016, 7: 13341.
|
| 35 |
SUN Binhan, DONG Xizhen, WEN Jianfeng, et al. Microstructure design strategies to mitigate hydrogen embrittlement in metallic materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2023, 46(8): 3060-3076.
|
| 36 |
TOLSTOLUTSKA G D, AZARENKOV M O, BILOUS V A, et al. Hydrogen barrier coatings and their permeation resistance[J]. Problems of Atomic Science and Technology, 2024: 100-117.
|
| 37 |
CHEN Y S, LU H, LIANG J, et al. Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates[J]. Science, 2020, 367(6474): 171-175.
|
| 38 |
SUN B, LU W, GAULT B, et al. Chemical heterogeneity enhances hydrogen resistance in high-strength steels[J]. Nature Materials, 2021, 20(12): 1629-1634.
|
| 39 |
KOYAMA Motomichi, ICHII Kenshiro, TSUZAKI Kaneaki. Grain refinement effect on hydrogen embrittlement resistance of an equiatomic CoCrFeMnNi high-entropy alloy[J]. International Journal of Hydrogen Energy, 2019, 44(31): 17163-17167.
|
| 40 |
BECHTLE S, KUMAR M, SOMERDAY B P, et al. Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials[J]. Acta Materialia, 2009, 57(14): 4148-4157.
|
| 41 |
CHO Hyung-Jun, CHO Yeonggeun, GWON Hojun, et al. Effects of Ni/Cu replacement on improvement of tensile and hydrogen-embrittlement properties in austenitic stainless steels[J]. Acta Materialia, 2022, 235: 118093.
|
| 42 |
KIM Dong-Han, MOALLEMI Mohammad, KIM Kyung-Shik, et al. Hydrogen embrittlement micromechanisms and direct observations of hydrogen transportation by dislocations during deformation in a carbon-doped medium entropy alloy[J]. Journal of Materials Research and Technology, 2022, 20: 18-25.
|
| 43 |
DING C D, JIAO Z B, LUAN J H, et al. Suppressing hydrogen embrittlement of a CrCoNi medium-entropy alloy by triggering co-segregation of carbon, boron, and Cr[J]. Corrosion Science, 2024, 236: 112232.
|
| 44 |
GONG Xujie, SUN Ruize, LEI Ruichao, et al. Iterative multi-objective design of hydrogen embrittlement resistant high-strength steels using Bayesian optimization[J]. Corrosion Science, 2024, 231: 111953.
|