化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6226-6238.DOI: 10.16085/j.issn.1000-6613.2023-0066
• 能源加工与技术 • 上一篇
李卫东(), 李逸龙, 滕霖(), 尹鹏博, 黄鑫, 李加庆, 罗宇, 江莉龙
收稿日期:
2023-01-13
修回日期:
2023-03-24
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
滕霖
作者简介:
李卫东(1991—),男,博士,副教授,研究方向为新能源储运。E-mail:liweidongsc@126.com。
基金资助:
LI Weidong(), LI Yilong, TENG Lin(), YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong
Received:
2023-01-13
Revised:
2023-03-24
Online:
2023-12-25
Published:
2024-01-08
Contact:
TENG Lin
摘要:
由于氨的高能量密度和零碳特性,其作为氢能和可再生能源载体具有良好的未来市场。氨比氢更易储运且本质安全性强,有望成为推动能源革命、社会进步和国家发展的零碳能源发展路线之一。本文从氨能的全产业链角度出发,介绍了合成氨产业发展趋势以及各类合成氨技术的最新进展和成本经济性;列举了目前氨的主要储运方式、效率、成本和安全性特征;综述了氨的新能源燃料应用,包括氨燃料电池、氨内燃机、氨燃气轮机等技术体系发展现状和燃料成本经济性,以及氨分解制氢效率和生产成本优势。通过上述技术和经济性分析,探讨了氨能在能源系统中的重要作用,进一步梳理了氨能技术发展方向。
中图分类号:
李卫东, 李逸龙, 滕霖, 尹鹏博, 黄鑫, 李加庆, 罗宇, 江莉龙. “双碳”目标下的氨能技术与经济性研究进展[J]. 化工进展, 2023, 42(12): 6226-6238.
LI Weidong, LI Yilong, TENG Lin, YIN Pengbo, HUANG Xin, LI Jiaqing, LUO Yu, JIANG Lilong. Research progress on ammonia energy technology and economy under "carbon emission peak" and "carbon neutrality" targets[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6226-6238.
工艺类型 | 氢气价格/CNY·kg-1 | 氢气成本/CNY·(t NH3)-1 | 合成氨成本/CNY·t-1 | 碳排放/t CO2·(t NH3)-1 | 绿色溢价/CNY·(t NH3)-1 |
---|---|---|---|---|---|
PEM工艺 | 25.82 | 4556 | 5293 | — | 3451 |
AWE工艺 | 24.92 | 4398 | 5135 | — | 3293 |
SOE工艺 | 27.69 | 4886 | 4922 | — | 3080 |
传统H-B工艺 | — | — | 1842 | 2.78 | — |
表1 制氨工艺成本对比
工艺类型 | 氢气价格/CNY·kg-1 | 氢气成本/CNY·(t NH3)-1 | 合成氨成本/CNY·t-1 | 碳排放/t CO2·(t NH3)-1 | 绿色溢价/CNY·(t NH3)-1 |
---|---|---|---|---|---|
PEM工艺 | 25.82 | 4556 | 5293 | — | 3451 |
AWE工艺 | 24.92 | 4398 | 5135 | — | 3293 |
SOE工艺 | 27.69 | 4886 | 4922 | — | 3080 |
传统H-B工艺 | — | — | 1842 | 2.78 | — |
运输方式 | 事故可能性 | 事故严重程度 | 风险等级 |
---|---|---|---|
管道 | 极低 | 中 | 低 |
公路 | 中 | 高 | 高 |
铁路 | 低 | 极高 | 高 |
驳船 | 低 | 中 | 中 |
表2 不同运输方式风险评估
运输方式 | 事故可能性 | 事故严重程度 | 风险等级 |
---|---|---|---|
管道 | 极低 | 中 | 低 |
公路 | 中 | 高 | 高 |
铁路 | 低 | 极高 | 高 |
驳船 | 低 | 中 | 中 |
燃料 | 热值/mJ·kg-1 | 能量密度/mJ·L-1 | 密度/kg·m-3 | 辛烷值(RON) | 火焰速度/m·s-1 | 可燃性极限体积分数/% | 汽化潜热/kJ·kg-1 |
---|---|---|---|---|---|---|---|
液氨 | 18.6 | 12.69(1atm,33°C) | 682 | >130 | 0.067 | 15~28 | 1370 |
液氢 | 120 | 8.5(1atm,-253°C) | 70.85 | >130 | 3.25 | 4.7~75 | 445.6 |
柴油 | 44.11 | 32.89(1atm,25°C) | 745.7 | <20 | ~0.80 | 0.43~0.6 | 240 |
汽油 | 44.34 | 30.93(1atm,25°C) | 697.6 | 100 | 0.41 | 0.6~8 | 305 |
甲醇 | 19.90 | 15.65(1atm,25°C) | 786.3 | 108.7 | 0.56 | 6.7~36 | 109 |
乙醇 | 26.84 | 21.07(1atm,25°C) | 785.1 | 108.6 | 0.58 | 3.3~19 | 840 |
表3 氨与其他燃料的燃烧特性对比[97]
燃料 | 热值/mJ·kg-1 | 能量密度/mJ·L-1 | 密度/kg·m-3 | 辛烷值(RON) | 火焰速度/m·s-1 | 可燃性极限体积分数/% | 汽化潜热/kJ·kg-1 |
---|---|---|---|---|---|---|---|
液氨 | 18.6 | 12.69(1atm,33°C) | 682 | >130 | 0.067 | 15~28 | 1370 |
液氢 | 120 | 8.5(1atm,-253°C) | 70.85 | >130 | 3.25 | 4.7~75 | 445.6 |
柴油 | 44.11 | 32.89(1atm,25°C) | 745.7 | <20 | ~0.80 | 0.43~0.6 | 240 |
汽油 | 44.34 | 30.93(1atm,25°C) | 697.6 | 100 | 0.41 | 0.6~8 | 305 |
甲醇 | 19.90 | 15.65(1atm,25°C) | 786.3 | 108.7 | 0.56 | 6.7~36 | 109 |
乙醇 | 26.84 | 21.07(1atm,25°C) | 785.1 | 108.6 | 0.58 | 3.3~19 | 840 |
1 | Genovaitė LIOBIKIENĖ, BUTKUS Mindaugas. The European Union possibilities to achieve targets of Europe 2020 and Paris agreement climate policy[J]. Renewable Energy, 2017, 106: 298-309. |
2 | ABE J O, POPOOLA A P I, AJENIFUJA E, et al. Hydrogen energy, economy and storage: Review and recommendation[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15072-15086. |
3 | SAZALI Norazlianie. Emerging technologies by hydrogen: A review[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771. |
4 | Ankica KOVAČ, PARANOS Matej, Doria MARCIUŠ. Hydrogen in energy transition: A review[J]. International Journal of Hydrogen Energy, 2021, 46(16): 10016-10035. |
5 | YAPICIOGLU Arda, DINCER Ibrahim. A review on clean ammonia as a potential fuel for power generators[J]. Renewable and Sustainable Energy Reviews, 2019, 103: 96-108. |
6 | MACFARLANE Douglas R, CHEREPANOV Pavel V, CHOI Jaecheol, et al. A roadmap to the ammonia economy[J]. Joule, 2020, 4(6): 1186-1205. |
7 | SMITH Collin, HILL Alfred K, Laura TORRENTE-MURCIANO. Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape[J]. Energy & Environmental Science, 2020, 13(2): 331-344. |
8 | NAYAK-LUKE Richard Michael, BAÑARES-ALCÁNTARA R. Techno-economic viability of islanded green ammonia as a carbon-free energy vector and as a substitute for conventional production[J]. Energy & Environmental Science, 2020, 13(9): 2957-2966. |
9 | COLLODI Guido, AZZARO Giuliana, FERRARI Noemi, et al. Techno-economic evaluation of deploying CCS in SMR based merchant H2 production with NG as feedstock and fuel[J]. Energy Procedia, 2017, 114: 2690-2712. |
10 | 范天熙. MOFs催化剂制备及其低温电催化合成氨性能[D]. 北京: 北京化工大学, 2016. |
FAN Tianxi. The preparation of MOFs and their catalytic performance for ammonia synthesis at low temperature and atmospheric pressure[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
11 | 景俊萌, 庞杰, 房晓敏, 等. 电化学合成氨研究进展[J]. 化学研究, 2019, 30(5): 522-531. |
JING Junmeng, PANG Jie, FANG Xiaomin, et al. Research progress of electrochemical ammonia synthesis[J]. Chemical Research, 2019, 30(5): 522-531. | |
12 | NUTTALL L J, FICKETT A P, TITTERINGTON W A. Hydrogen generation by solid polymer electrolyte water electrolysis[M]//VEZIROĞLU T N. Hydrogen Energy. Boston, MA: Springer, 1975: 441-455. |
13 | GRUBB W T. Ionic migration in ion-exchange membranes[J]. The Journal of Physical Chemistry, 1959, 63(1): 55-58. |
14 | GIDDEY S, BADWAL S P S, KULKARNI A. Review of electrochemical ammonia production technologies and materials[J]. International Journal of Hydrogen Energy, 2013, 38(34): 14576-14594. |
15 | LAN Rong, IRVINE John T S, TAO Shanwen. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3(1): 1145. |
16 | CHEN Shiming, PERATHONER Siglinda, AMPELLI Claudio, et al. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7393-7400. |
17 | RENNER J N, GREENLEE L F, AYRES K E, et al. Electrochemical synthesis of ammonia: A low pressure, low temperature approach[J]. Interface Magazine, 2015, 24(2): 51-57. |
18 | OZTURK Merve, DINCER Ibrahim. An integrated system for ammonia production from renewable hydrogen: A case study[J]. International Journal of Hydrogen Energy, 2021, 46(8): 5918-5925. |
19 | ADAM Duckett. Green ammonia project set for launch in UK today[EB/OL]. (2018-06-26) [2022-12-24]. . |
20 | CARMO Marcelo, FRITZ David L, Jürgen MERGEL, et al. A comprehensive review on PEM water electrolysis[J]. International Journal of Hydrogen Energy, 2013, 38(12): 4901-4934. |
21 | ZOULIAS Emmanuel, VARKARAKI Elli, LYMBEROPOULOS Nicolaos, et al. A review on water electrolysis[J]. Tcjst, 2004, 4(2): 41-71. |
22 | BIROL Fatih. The future of hydrogen: Seizing today’s opportunities[R]. IEA, 2019. |
23 | GRUNDT T, CHRISTIANSEN K. Hydrogen by water electrolysis as basis for small scale ammonia production. A comparison with hydrocarbon based technologies[J]. International Journal of Hydrogen Energy, 1982, 7(3): 247-257. |
24 | BICER Yusuf, DINCER Ibrahim, ZAMFIRESCU Calin, et al. Comparative life cycle assessment of various ammonia production methods[J]. Journal of Cleaner Production, 2016, 135: 1379-1395. |
25 | FRATTINI D, CINTI G, BIDINI G, et al. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants[J]. Renewable Energy, 2016, 99: 472-482. |
26 | CHEHADE Ghassan, DINCER Ibrahim. Progress in green ammonia production as potential carbon-free fuel[J]. Fuel, 2021, 299: 120845. |
27 | O'BRIEN J E, MCKELLAR M G, HARVEGO E A, et al. High-temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy-summary of system simulation and economic analyses[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4808-4819. |
28 | BUTTLER Alexander, SPLIETHOFF Hartmut. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
29 | CINTI Giovanni, FRATTINI Domenico, JANNELLI Elio, et al. Coupling solid oxide electrolyser (SOE) and ammonia production plant[J]. Applied Energy, 2017, 192: 466-476. |
30 | HARVEGO E A, MCKELLAR M G, SOHAL M S, et al. Economic analysis of a nuclear reactor powered high-temperature electrolysis hydrogen production plant[C]//Proceedings of ASME 2008 2nd International Conference on Energy Sustainability Collocated with the Heat Transfer, Fluids Engineering, and 3rd Energy Nanotechnology Conferences, August 10-14, 2008, Jacksonville, Florida, USA. 2009: 549-558. |
31 | ALZAHRANI Abdullah, DINCER Ibrahim. Modeling and performance optimization of a solid oxide electrolysis system for hydrogen production[J]. Applied Energy, 2018, 225: 471-485. |
32 | Ulrik FRØHLKE. Topsoe and first ammonia launch zero emission ammonia production with the world’s largest reservation of electrolyzer capacity[EB/OL]. (2022-09-14) [2022-12-24]. . |
33 | KRAGLUND Mikkel Rykær, CARMO Marcelo, Günter SCHILLER, et al. Ion-solvating membranes as a new approach towards high rate alkaline electrolyzers[J]. Energy & Environmental Science, 2019, 12(11): 3313-3318. |
34 | GÜR Turgut M. Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767. |
35 | 刘畅, 刘先军, 刘淑芝, 等. 电化学合成氨研究进展[J]. 当代化工, 2020, 49(3): 655-659. |
LIU Chang, LIU Xianjun, LIU Shuzhi, et al. Research progress in electrochemical ammonia synthesis[J]. Contemporary Chemical Industry, 2020, 49(3): 655-659. | |
36 | 李志军, 刘京京, 陈爱琴, 等. 可再生能源转化为氨氢能源体系技术和经济性分析[J]. 上海节能, 2022(9): 1125-1131. |
LI Zhijun, LIU Jingjing, CHEN Aiqin, et al. Technical and economic analysis on renewable energy conversion to ammonia hydrogen energy system[J]. Shanghai Energy Saving, 2022(9): 1125-1131. | |
37 | 刘化章. 合成氨工业:过去、现在和未来——合成氨工业创立100周年回顾、启迪和挑战[J]. 化工进展, 2013, 32(9): 1995-2005. |
LIU Huazhang. Ammonia synthesis industry: Past, present and future—Retrospect, enlightenment and challenge from 100 years of ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 1995-2005. | |
38 | MCENANEY Joshua M, SINGH Aayush R, SCHWALBE Jay A, et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure[J]. Energy & Environmental Science, 2017, 10(7): 1621-1630. |
39 | SURYANTO Bryan H R, MATUSZEK Karolina, CHOI Jaecheol, et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle[J]. Science, 2021, 372(6547): 1187-1191. |
40 | ZHOU Fengling, AZOFRA Luis Miguel, Muataz ALI, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
41 | WANG D, AZOFRA L M, HARB M, et al. Energy-efficient nitrogen reduction to ammonia at low overpotential in aqueous electrolyte under ambient conditions[J]. ChemSusChem, 2018, 11(19): 3416-3422. |
42 | GIDDEY Sarb, MUNNINGS Chris, KULKARNI Ani, et al. CSIRO hydrogen to ammonia R&D[R]. Australia’s National Science Agency, 2020. |
43 | HOCHMAN Gal, GOLDMAN Alan S, FELDER Frank A, et al. Potential economic feasibility of direct electrochemical nitrogen reduction as a route to ammonia[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 8938-8948. |
44 | Mohammed AL-BREIKI, BICER Yusuf. Technical assessment of liquefied natural gas, ammonia and methanol for overseas energy transport based on energy and exergy analyses[J]. International Journal of Hydrogen Energy, 2020, 45(60): 34927-34937. |
45 | WOLF Erik. Large-scale hydrogen energy storage[M]//Electrochemical energy storage for renewable sources and grid balancing. Elsevier, 2015: 129-142. |
46 | SONKER Muskan, TIWARY Saurabh Kr, SHREYASH Nehil, et al. Ammonia as an alternative fuel for vehicular applications: Paving the way for adsorbed ammonia and direct ammonia fuel cells[J]. Journal of Cleaner Production, 2022, 376: 133960. |
47 | BARTELS Jeffrey Ralph. A feasibility study of implementing an ammonia economy[D]. Ames: Iowa State University, 2008. |
48 | ROUWENHORST Kevin, Louis van der HAM, Guido MUL, et al. Power-to-ammonia-to-power (P 2A2P) for local electricity storage in 2025[EB/OL]. (2018-10-30) [2022-12-24]. . |
49 | PALYS Matthew J, DAOUTIDIS Prodromos. Using hydrogen and ammonia for renewable energy storage: A geographically comprehensive techno-economic study[J]. Computers & Chemical Engineering, 2020, 136: 106785. |
50 | NationMaster. Top countries for ammonia productio[EB/OL]. [2022-12-24]. . |
51 | World Integrated Trade Solution. Ammonia; anhydrous exports by country in 2019[EB/OL]. [2022-12-24]. . |
52 | World Integrated Trade Solution. Ammonia; anhydrous imports by country in 2019[EB/OL]. [2022-12-24]. . |
53 | ROUWENHORST Kevin H R, BROWN Trevor. Techno-economic considerations for ammonia production, storage, and transportation[M]//Aika Ki, Kobayashi H. CO2 Free ammonia as an energy carrier. Singapore: Springer, 2023: 667-679. |
54 | 唐景奥, 李振威, 杨骞翔. 液氨的储存、运输及液氨储罐区的安全标准评价[J]. 中国石油和化工标准与质量, 2016, 36(13): 61, 63. |
TANG Jing’ao, LI Zhenwei, YANG Qianxiang. Storage and transportation of liquid ammonia and safety standard evaluation of liquid ammonia storage tank area[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(13): 61, 63. | |
55 | YANG Christopher, OGDEN Joan. Determining the lowest-cost hydrogen delivery mode[J]. International Journal of Hydrogen Energy, 2007, 32(2): 268-286. |
56 | Agustin VALERA-MEDINA, VRIES Niels de, LAURSEN Rene, et al. Ammonia as marine fuel[EB/OL]. (2018-11-01) [2022-12-24]. . |
57 | Minnesota Department of Agriculture. Anhydrous ammonia (NH3) transportation[EB/OL]. [2022-12-24]. . |
58 | MALENKOV A S, V Yu NAUMOV, SHABALOVA S I, et al. Economic feasibility assessment of using ammonia for hydrogen transportation[C]//SOLOVEV D B, KYRIAKOPOULOS G L, VENELIN T. SMART Automatics and Energy. Singapore: Springer, 2022: 89-98. |
59 | 王华林. 液氨安全贮存浅析[J]. 现代工业经济和信息化, 2014, 4(13): 64-65. |
WANG Hualin. Safe storage of liquid ammonia[J]. Modern Industrial Economy and Informationization, 2014, 4(13): 64-65. | |
60 | 李重谦. 浅析液氨存储及运输安全应对[J]. 化学工程与装备, 2019(10): 294-295. |
LI Zhongqian. Analysis on the safety countermeasures of liquid ammonia storage and transportation[J]. Chemical Engineering & Equipment, 2019(10): 294-295. | |
61 | LIPPMANN Dennis G. Evaluation of risks related to the transport of anhydrous ammonia and their mitigation by localized small scale production[C]//Proceedings of 2012 AIChE Ammonia Safety Symposium, 2012. |
62 | Norihiko IKI, KURATA Osamu, MATSUNUMA Takayuki, et al. Micro gas turbine firing kerosene and ammonia[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, June 15-19, 2015, Montreal, Quebec, Canada. 2015. |
63 | HAPUTHANTHRI Shehan Omantha, MAXWELL Timothy Taylor, FLEMING John, et al. Ammonia and gasoline fuel blends for spark ignited internal combustion engines[J]. Journal of Energy Resources Technology, 2015, 137(6): 062201. |
64 | NOZARI Hadi, Arif KARABEYOĞLU. Numerical study of combustion characteristics of ammonia as a renewable fuel and establishment of reduced reaction mechanisms[J]. Fuel, 2015, 159: 223-233. |
65 | REITER Aaron J, KONG Song-Charng. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87-97. |
66 | Kyunghyun RYU, ZACHARAKIS-JUTZ George E, KONG Song-Charng. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation[J]. International Journal of Hydrogen Energy, 2014, 39(5): 2390-2398. |
67 | ZAMFIRESCU C, DINCER I. Ammonia as a green fuel and hydrogen source for vehicular applications[J]. Fuel Processing Technology, 2009, 90(5): 729-737. |
68 | ZAMFIRESCU C, DINCER I. Using ammonia as a sustainable fuel[J]. Journal of Power Sources, 2008, 185(1): 459-465. |
69 | CAIRNS E J, SIMONS E L, TEVEBAUGH A D. Ammonia-oxygen fuel cell[J]. Nature, 1968, 217(5130): 780-781. |
70 | GUO Yuqi, PAN Zhefei, AN Liang. Carbon-free sustainable energy technology: Direct ammonia fuel cells[J]. Journal of Power Sources, 2020, 476: 228454. |
71 | RATHORE Shambhu Singh, BISWAS Saheli, FINI Daniel, et al. Direct ammonia solid-oxide fuel cells: A review of progress and prospects[J]. International Journal of Hydrogen Energy, 2021, 46(71): 35365-35384. |
72 | MIYAZAKI Kazunari, MUROYAMA Hiroki, MATSUI Toshiaki, et al. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells[J]. Sustainable Energy & Fuels, 2020, 4(10): 5238-5246. |
73 | WANG Yuanhui, YANG Jun, WANG Jianxin, et al. Low-temperature ammonia decomposition catalysts for direct ammonia solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2020, 167(6): 064501. |
74 | OKANISHI T, OKURA K, SRIFA A, et al. Comparative study of ammonia-fueled solid oxide fuel cell systems[J]. Fuel Cells, 2017, 17(3): 383-390. |
75 | LUO Yu, SHI Yixiang, LIAO Shuting, et al. Coupling ammonia catalytic decomposition and electrochemical oxidation for solid oxide fuel cells: A model based on elementary reaction kinetics[J]. Journal of Power Sources, 2019, 423: 125-136. |
76 | LUO Yu, LIAO Shuting, CHEN Shuai, et al. Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation[J]. Applied Energy, 2022, 307: 118158. |
77 | LI Yi, PILLAI Hemanth Somarajan, WANG Teng, et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells[J]. Energy & Environmental Science, 2021, 14(3): 1449-1460. |
78 | LIU Yun, PAN Zhefei, ESAN Oladapo Christopher, et al. Performance characteristics of a direct ammonia fuel cell with an anion exchange membrane[J]. Energy & Fuels, 2022, 36(21): 13203-13211. |
79 | 方辉煌, 程金星, 罗宇, 等. 氨电氧化催化剂及其低温直接氨碱性膜燃料电池性能的研究进展[J]. 化工学报, 2022, 73(9): 3802-3814. |
FANG Huihuang, CHENG Jinxing, LUO Yu, et al. Recent progress on ammonia oxidation catalysts at anode and their performances in low-temperature direct ammonia alkaline exchange membrane fuel cells[J]. CIESC Journal, 2022, 73(9): 3802-3814. | |
80 | ROSS Philip. Characteristics of an NH3-air fuel cell system for vehicular applications[C]//ASME 16th Intersociety Energy Conversion Engineering Conference, Atlanta, USA. 1981: LBL-12754. |
81 | JIAO Kui, XUAN Jin, DU Qing, et al. Designing the next generation of proton-exchange membrane fuel cells[J]. Nature, 2021, 595(7867): 361-369. |
82 | LIN Li, ZHANG Lixuan, LUO Yu, et al. Highly-integrated and cost-efficient ammonia-fueled fuel cell system for efficient power generation: A comprehensive system optimization and techno-economic analysis[J]. Energy Conversion and Management, 2022, 251: 114917. |
83 | The Hong Kong Polytechnic University. World’s first ammonia-powered electric vehicle created at PolyU[EB/OL]. [2022-12-24]. . |
84 | AFIF Ahmed, RADENAHMAD Nikdalila, CHEOK Quentin, et al. Ammonia-fed fuel cells: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 822-835. |
85 | VERHELST Sebastian, WALLNER Thomas. Hydrogen-fueled internal combustion engines[J]. Progress in Energy and Combustion Science, 2009, 35(6): 490-527. |
86 | CORNELIUS Walter, William HUELLMANTEL L, MITCHELL Harry R. Ammonia as an engine fuel[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1965: 300-326. |
87 | LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki, et al. Study on using hydrogen and ammonia as fuels: Combustion characteristics and NO x formation[J]. International Journal of Energy Research, 2014, 38(9): 1214-1223. |
88 | LEE J H, KIM J H, PARK J H, et al. Studies on properties of laminar premixed hydrogen-added ammonia/air flames for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1054-1064. |
89 | FRIGO Stefano, GENTILI Roberto. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen[J]. International Journal of Hydrogen Energy, 2013, 38(3): 1607-1615. |
90 | HAPUTHANTHRI Shehan O. Ammonia gasoline fuel blends: Feasibility study of commercially available emulsifiers and effects on stability and engine performance[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2014. |
91 | VALERA-MEDINA A, XIAO H, OWEN-JONES M, et al. Ammonia for power[J]. Progress in Energy and Combustion Science, 2018, 69: 63-102. |
92 | YAPICIOGLU Arda, DINCER Ibrahim. Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators[J]. Applied Thermal Engineering, 2019, 154: 1-8. |
93 | GRAY James T, DIMITROFF Edward, MECKEL Nelson T, et al. Ammonia fuel-engine compatibility and combustion[C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1966: 785-807. |
94 | LASOCKI J, BEDNARSKI M, SIKORA M. Simulation of ammonia combustion in dual-fuel compression-ignition engine[J]. IOP Conference Series: Earth and Environmental Science, 2019, 214: 012081. |
95 | HOGERWAARD Janette, DINCER Ibrahim. Comparative efficiency and environmental impact assessments of a hydrogen assisted hybrid locomotive[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6894-6904. |
96 | CROLIUS Stephen H. Sturman industries’ dual-fuel ammonia engine[EB/OL]. (2016-10-21) [2022-12-24]. . |
97 | TORNATORE Cinzia, MARCHITTO Luca, SABIA Pino, et al. Ammonia as green fuel in internal combustion engines: State-of-the-art and future perspectives[J]. Frontiers in Mechanical Engineering, 2022, 8: 944201. |
98 | RUNGE Philipp, Christian SÖLCH, ALBERT Jakob, et al. Economic comparison of different electric fuels for energy scenarios in 2035[J]. Applied Energy, 2019, 233: 1078-1093. |
99 | Norihiko IKI, KURATA Osamu, MATSUNUMA Takayuki, et al. Micro gas turbine operation with kerosene and ammonia[C]//Proceedings of the 11th Annual NH3 Fuel Conference, Iowa, IA. USA: 2014: 21-24. |
100 | Norihiko IKI, KURATA Osamu, MATSUNUMA Takayuki, et al. Micro gas turbine firing ammonia[C]//Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines. Seoul, South Korea. American Society of Mechanical Engineers, 2016. |
101 | KURATA Osamu, Norihiko IKI, INOUE Takahiro, et al. Development of a wide range-operable, rich-lean low-NO x combustor for NH3 fuel gas-turbine power generation[J]. Proceedings of the Combustion Institute, 2019, 37(4): 4587-4595. |
102 | ATCHISON Julian. Mitsubishi Heavy Industries to explore ammonia-fired gas turbines in Singapore, Indonesia[EB/OL]. (2022-11-01) [2022-12-24]. . |
103 | CROLIUS Stephen H. Cardiff University launches ammonia gas turbine project[EB/OL]. (2020-04-23) [2022-12-24]. . |
104 | T-RAISSI A, BLOCK D L. Hydrogen: Automotive fuel of the future[J]. IEEE Power and Energy Magazine, 2004, 2(6): 40-45. |
105 | LIAN Haoyu, LI Xiaosong, LIU Jinglin, et al. Oxidative pyrolysis reforming of methanol in warm plasma for an on-board hydrogen production[J]. International Journal of Hydrogen Energy, 2017, 42(19): 13617-13624. |
106 | SUN Shangcong, JIANG Qiuqiao, ZHAO Dongyue, et al. Ammonia as hydrogen carrier: Advances in ammonia decomposition catalysts for promising hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2022, 169: 112918. |
107 | LAMB Krystina E, DOLAN Michael D, KENNEDY Danielle F. Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification[J]. International Journal of Hydrogen Energy, 2019, 44(7): 3580-3593. |
108 | LUCENTINI Ilaria, CASANOVAS Albert, LLORCA Jordi. Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2 [J]. International Journal of Hydrogen Energy, 2019, 44(25): 12693-12707. |
109 | ZHANG Zhenyu, LIGUORI Simona, FUERST Thomas F, et al. Efficient ammonia decomposition in a catalytic membrane reactor to enable hydrogen storage and utilization[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5975-5985. |
110 | WANG Ziqing, QU Yingmin, SHEN Xiaolong, et al. Ruthenium catalyst supported on Ba modified ZrO2 for ammonia decomposition to CO x -free hydrogen[J]. International Journal of Hydrogen Energy, 2019, 44(14): 7300-7307. |
111 | HU Xiucui, WANG Weiwei, JIN Zhao, et al. Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia[J]. Journal of Energy Chemistry, 2019, 38: 41-49. |
112 | MUKHERJEE Shreya, DEVAGUPTAPU Surya V, SVIRIPA Anna, et al. Low-temperature ammonia decomposition catalysts for hydrogen generation[J]. Applied Catalysis B: Environmental, 2018, 226: 162-181. |
113 | AKIYAMA Mao, AIHARA Keigo, SAWAGUCHI Tomiko, et al. Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma[J]. International Journal of Hydrogen Energy, 2018, 43(31): 14493-14497. |
114 | KURTOĞLU Samira Fatma, SARP Seda, YıLMAZ AKKAYA Ceren, et al. CO x -free hydrogen production from ammonia decomposition over sepiolite-supported nickel catalysts[J]. International Journal of Hydrogen Energy, 2018, 43(21): 9954-9968. |
115 | DASIREDDY Venkata D B C, LIKOZAR Blaž. CO x -free hydrogen generation via decomposition of ammonia over copper and zinc-based catalysts[J]. Fuel, 2017, 196: 325-335. |
116 | Špela HAJDUK, DASIREDDY Venkata D B C, LIKOZAR Blaž, et al. CO x -free hydrogen production via decomposition of ammonia over Cu-Zn-based heterogeneous catalysts and their activity/stability[J]. Applied Catalysis B: Environmental, 2017, 211: 57-67. |
117 | SATO Katsutoshi, Naruhiko ABE, KAWAGOE Takafumi, et al. Supported Ni catalysts prepared from hydrotalcite-like compounds for the production of hydrogen by ammonia decomposition[J]. International Journal of Hydrogen Energy, 2017, 42(10): 6610-6617. |
118 | ENGELBRECHT Nicolaas, CHIUTA Steven, BESSARABOV Dmitri G. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes[J]. Journal of Power Sources, 2018, 386: 47-55. |
119 | GIDDEY S, BADWAL S P S, MUNNINGS C, et al. Ammonia as a renewable energy transportation media[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 10231-10239. |
120 | LEE Boreum, PARK Junhyung, LEE Hyunjun, et al. Assessment of the economic potential: CO x -free hydrogen production from renewables via ammonia decomposition for small-sized H2 refueling stations[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109262. |
121 | LIN Li, TIAN Yao, SU Wenbin, et al. Techno-economic analysis and comprehensive optimization of an on-site hydrogen refuelling station system using ammonia: Hybrid hydrogen purification with both high H2 purity and high recovery[J]. Sustainable Energy & Fuels, 2020, 4(6): 3006-3017. |
122 | 李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target:Research on development basis and route[J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. | |
123 | 滕霖, 尹鹏博, 聂超飞, 等. “氨-氢”绿色能源路线及液氨储运技术研究进展[J]. 油气储运, 2022, 41(10): 1115-1129. |
TENG Lin, YIN Pengbo, NIE Chaofei, et al. Research progress on “ammonia-hydrogen” green energy roadmap and storage & transportation technology of liquid ammonia[J]. Oil & Gas Storage and Transportation, 2022, 41(10): 1115-1129. | |
124 | 吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39. |
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the “dual-carbon” background[J]. Petroleum And New Energy, 2022, 34(5): 27-33, 39. | |
125 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
[1] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[2] | 马有福, 王梓文, 吕俊复. 热风再循环机炉耦合高效发电系统变负荷性能仿真及优化[J]. 化工进展, 2022, 41(5): 2340-2347. |
[3] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[4] | 白旭东, 王建勋. 330MW锅炉配风方式对NOx排放浓度和锅炉经济性的影响分析[J]. 化工进展, 2021, 40(S2): 25-29. |
[5] | 王建勋. 火电机组余热梯级供热技术的综合分析[J]. 化工进展, 2021, 40(S2): 149-155. |
[6] | 唐志伟, 刘静, 石英, 陆颖, 肖荣晖, 王昊. 低碳供热技术节能指标与经济效益综合分析[J]. 化工进展, 2021, 40(S1): 156-162. |
[7] | 王光永, 李荣, 鄢义, 谌晓玲, 贾绘如, 毛震波, 王大军. 羟醛缩合法制甲基丙烯酸甲酯催化剂研究及技术经济性分析[J]. 化工进展, 2021, 40(5): 2574-2580. |
[8] | 章一蒙, 马欢欢, 陈登宇, 周建斌. 3MW杏壳气化发电联产活性炭、热、肥的应用案例分析[J]. 化工进展, 2021, 40(3): 1667-1674. |
[9] | 王建勋. 运行背压变化对低压缸零出力技术安全性及经济性的影响分析[J]. 化工进展, 2020, 39(S1): 85-89. |
[10] | 魏书梅, 徐亚荣, 聂宏元, 朱学栋. 甲醇耦合轻烃反应制芳烃/烯烃研究进展与经济性分析[J]. 化工进展, 2020, 39(S1): 116-122. |
[11] | 戈志华, 张倩, 熊念, 张尤俊. 330MW供热机组低压缸近零出力热力性能分析[J]. 化工进展, 2020, 39(9): 3650-3657. |
[12] | 黄格省, 胡杰, 李锦山, 师晓玉, 丁文娟, 周笑洋. 我国煤制烯烃技术发展现状与趋势分析[J]. 化工进展, 2020, 39(10): 3966-3974. |
[13] | 吕宏卿,王鑫,刘洪锟,邢玉雷,韩旭,齐春华,徐克,李华. 海水淡化用薄壁卷焊钛管传热及耐蚀性能[J]. 化工进展, 2019, 38(08): 3556-3561. |
[14] | 李林辉,刘化章,韩文锋,黎志,李蕾,王志昆. SrO助催化剂对Fe1- x O基熔铁氨合成催化剂性能的影响[J]. 化工进展, 2019, 38(03): 1371-1376. |
[15] | 何青, 罗宁, 刘文毅. 基于全寿命周期成本的压缩空气储能系统储气装置经济性分析[J]. 化工进展, 2018, 37(S1): 67-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |