化工进展 ›› 2024, Vol. 43 ›› Issue (12): 7067-7077.DOI: 10.16085/j.issn.1000-6613.2023-2053
• 资源与环境化工 • 上一篇
赵玥琪1(
), 王亚琴2, 张晨1, 陈洲2,3, 高翔鹏1, 李明阳1(
)
收稿日期:2023-11-24
修回日期:2024-02-02
出版日期:2024-12-15
发布日期:2025-01-11
通讯作者:
李明阳
作者简介:赵玥琪(2000—),女,硕士研究生,研究方向为固废资源化利用。E-mail:1227421139@qq.com。
基金资助:
ZHAO Yueqi1(
), WANG Yaqin2, ZHANG Chen1, CHEN Zhou2,3, GAO Xiangpeng1, LI Mingyang1(
)
Received:2023-11-24
Revised:2024-02-02
Online:2024-12-15
Published:2025-01-11
Contact:
LI Mingyang
摘要:
为提高制备的粉煤灰/铁尾矿基地质聚合物(IGF)抗压强度,通过单因素和正交实验分析了n(Na2O)/n(Al2O3)、激发剂模数、液固比、固化温度、铁尾矿掺量对IGF抗压强度的影响,并结合扫描电子显微镜(SEM)、X射线衍射(XRD)、红外光谱(FTIR)对IGF物相变化进行了表征。结果表明,IGF的抗压强度随激发剂模数、n(Na2O)/n(Al2O3)、液固比和铁尾矿掺量的增加呈先增后减趋势,与固化温度呈正相关,影响顺序为固化温度>模数>液固比>n(Na2O)/n(Al2O3)。SEM和XRD结果显示IGF中含有丰富的SiO2和Al2O3,两者结合生成的水化硅酸钙(C-A-H凝胶和C-S-H凝胶)可使材料结构更加致密,提高其耐久性和强度。此外,在粉煤灰基地质聚合物中添加铁尾矿可以填充IGF的孔隙结构,减少微观结构的破坏,使其致密性增加,从而满足建筑材料的应用标准,并为寻求水泥替代品、提高行业效率提供了可能。
中图分类号:
赵玥琪, 王亚琴, 张晨, 陈洲, 高翔鹏, 李明阳. 铁尾矿/粉煤灰基地质聚合物的制备及微观结构分析[J]. 化工进展, 2024, 43(12): 7067-7077.
ZHAO Yueqi, WANG Yaqin, ZHANG Chen, CHEN Zhou, GAO Xiangpeng, LI Mingyang. Preparation and microstructure analysis of iron tailings/fly ash based geopolymer[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7067-7077.
| 成分 | IOT | FA |
|---|---|---|
| SiO2 | 40.1 | 46.24 |
| Al2O3 | 11.63 | 38.08 |
| Fe2O3 | 15.08 | 3.20 |
| CaO | 9.87 | 4.30 |
| MgO | 14.78 | 0.86 |
| K2O | 3.05 | 1.08 |
| P2O5 | 2.91 | 0.63 |
| Na2O | 0.51 | 0.73 |
| TiO2 | 0.54 | 1.56 |
| SO3 | 0.70 | 2.16 |
| 其他 | 0.83 | 1.16 |
表1 原料的化学成分(质量分数,%)
| 成分 | IOT | FA |
|---|---|---|
| SiO2 | 40.1 | 46.24 |
| Al2O3 | 11.63 | 38.08 |
| Fe2O3 | 15.08 | 3.20 |
| CaO | 9.87 | 4.30 |
| MgO | 14.78 | 0.86 |
| K2O | 3.05 | 1.08 |
| P2O5 | 2.91 | 0.63 |
| Na2O | 0.51 | 0.73 |
| TiO2 | 0.54 | 1.56 |
| SO3 | 0.70 | 2.16 |
| 其他 | 0.83 | 1.16 |
| 水平 | 影响因素 | |||
|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | |
| 1 | 1.1 | 0.7 | 0.3 | 45 |
| 2 | 1.2 | 0.8 | 0.35 | 55 |
| 3 | 1.3 | 0.9 | 0.4 | 65 |
表2 正交实验因素水平
| 水平 | 影响因素 | |||
|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | |
| 1 | 1.1 | 0.7 | 0.3 | 45 |
| 2 | 1.2 | 0.8 | 0.35 | 55 |
| 3 | 1.3 | 0.9 | 0.4 | 65 |
| 正交 实验组 | 影响因素 | 抗压强度 /MPa | |||
|---|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | ||
| IGF-1 | 1.1 | 0.7 | 0.3 | 45 | 16.7 |
| IGF-2 | 1.1 | 0.8 | 0.35 | 55 | 20.07 |
| IGF-3 | 1.1 | 0.9 | 0.4 | 65 | 20.3 |
| IGF-4 | 1.2 | 0.7 | 0.35 | 65 | 18.92 |
| IGF-5 | 1.2 | 0.8 | 0.4 | 45 | 9.8 |
| IGF-6 | 1.2 | 0.9 | 0.3 | 55 | 16.1 |
| IGF-7 | 1.3 | 0.7 | 0.4 | 55 | 12.5 |
| IGF-8 | 1.3 | 0.8 | 0.3 | 65 | 22.5 |
| IGF-9 | 1.3 | 0.9 | 0.35 | 45 | 6.7 |
表3 正交实验方案及抗压强度
| 正交 实验组 | 影响因素 | 抗压强度 /MPa | |||
|---|---|---|---|---|---|
| 碱激发剂模数(A) | n(Na2O)/n(Al2O3)(B) | 液固比(C) | 固化温度(D)/℃ | ||
| IGF-1 | 1.1 | 0.7 | 0.3 | 45 | 16.7 |
| IGF-2 | 1.1 | 0.8 | 0.35 | 55 | 20.07 |
| IGF-3 | 1.1 | 0.9 | 0.4 | 65 | 20.3 |
| IGF-4 | 1.2 | 0.7 | 0.35 | 65 | 18.92 |
| IGF-5 | 1.2 | 0.8 | 0.4 | 45 | 9.8 |
| IGF-6 | 1.2 | 0.9 | 0.3 | 55 | 16.1 |
| IGF-7 | 1.3 | 0.7 | 0.4 | 55 | 12.5 |
| IGF-8 | 1.3 | 0.8 | 0.3 | 65 | 22.5 |
| IGF-9 | 1.3 | 0.9 | 0.35 | 45 | 6.7 |
| 水平数 | 抗压强度平均值/MPa | |||
|---|---|---|---|---|
| 碱激发剂模数 | n(Na2O)/n(Al2O3) | 液固比 | 固化温度 | |
| 1 | 19.023 | 16.040 | 18.433 | 11.067 |
| 2 | 14.940 | 17.457 | 15.230 | 16.233 |
| 3 | 13.900 | 14.367 | 14.200 | 20.573 |
| 极差R | 5.123 | 3.090 | 4.233 | 9.506 |
表4 抗压强度的极差分析
| 水平数 | 抗压强度平均值/MPa | |||
|---|---|---|---|---|
| 碱激发剂模数 | n(Na2O)/n(Al2O3) | 液固比 | 固化温度 | |
| 1 | 19.023 | 16.040 | 18.433 | 11.067 |
| 2 | 14.940 | 17.457 | 15.230 | 16.233 |
| 3 | 13.900 | 14.367 | 14.200 | 20.573 |
| 极差R | 5.123 | 3.090 | 4.233 | 9.506 |
| 因素 | 方差 | 自由度 | F |
|---|---|---|---|
| 碱激发剂模数 | 44.004 | 2 | 0.788 |
| n(Na2O)/n(Al2O3) | 14.355 | 2 | 0.257 |
| 液固比 | 29.243 | 2 | 0.523 |
| 固化温度/℃ | 135.890 | 2 | 2.432 |
| 误差 | 223.49 | 8 |
表5 抗压强度的方差分析
| 因素 | 方差 | 自由度 | F |
|---|---|---|---|
| 碱激发剂模数 | 44.004 | 2 | 0.788 |
| n(Na2O)/n(Al2O3) | 14.355 | 2 | 0.257 |
| 液固比 | 29.243 | 2 | 0.523 |
| 固化温度/℃ | 135.890 | 2 | 2.432 |
| 误差 | 223.49 | 8 |
| 1 | TANG Liang, LIU Xuemin, WANG Xueqiu, et al. Statistical analysis of tailings ponds in China[J]. Journal of Geochemical Exploration, 2020, 216: 106579. |
| 2 | GUO Penghui, ZHAO Zekun, LI Yongkui, et al. Co-utilization of iron ore tailings and coal fly ash for porous ceramsite preparation: Optimization, mechanism, and assessment[J]. Journal of Environmental Management, 2023, 348: 119273. |
| 3 | ZHANG Yiyue, WANG Fei, HUDSON-EDWARDS Karen A, et al. Characterization of mining-related aromatic contaminants in active and abandoned metal (loid) tailings ponds[J]. Environmental Science & Technology, 2020, 54(23): 15097-15107. |
| 4 | WEI Ziyao, JIA Yanshun, WANG Shaoquan, et al. Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: High-temperature performance and environmental aspects[J]. Journal of Cleaner Production, 2022, 335: 130318. |
| 5 | FENNELL Jon, ARCISZEWSKI Tim J. Current knowledge of seepage from oil sands tailings ponds and its environmental influence in northeastern Alberta[J]. Science of the Total Environment, 2019, 686: 968-985. |
| 6 | JING Jianfa, GUO Yufeng, WANG Shuai, et al. Chromium and iron recovery from hazardous extracted vanadium tailings via direct reduction magnetic separation[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 110047. |
| 7 | GENG Huanhuan, WANG Fei, YAN Changchun, et al. Leaching behavior of metals from iron tailings under varying pH and low-molecular-weight organic acids[J]. Journal of Hazardous Materials, 2020, 383: 121136. |
| 8 | YAO Geng, WANG Qiang, WANG Zhiming, et al. Activation of hydration properties of iron ore tailings and their application as supplementary cementitious materials in cement[J]. Powder Technology, 2020, 360: 863-871. |
| 9 | LU Chang, YANG Huaming, WANG Jie, et al. Utilization of iron tailings to prepare high-surface area mesoporous silica materials[J]. Science of the Total Environment, 2020, 736: 139483. |
| 10 | Xingdong LYU, SHEN Weiguo, WANG Lei, et al. A comparative study on the practical utilization of iron tailings as a complete replacement of normal aggregates in dam concrete with different gradation[J]. Journal of Cleaner Production, 2019, 211: 704-715. |
| 11 | 魏铭, 张长森, 王旭, 等. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 250-259. |
| WEI Ming, ZHANG Changsen, WANG Xu, et al. Alkali-activated materials modified with micro-nano additives: A review[J]. Material Introduction, 2023,37 (4): 250-259. | |
| 12 | KRISHNA R S, SHAIKH Faiz, MISHRA Jyotirmoy, et al. Mine tailings-based geopolymers: Properties, applications and industrial prospects[J]. Ceramics International, 2021, 47(13): 17826-17843. |
| 13 | ZHAO Jihui, TONG Liangyu, LI Boen, et al. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment[J]. Journal of Cleaner Production, 2021, 307: 127085. |
| 14 | HAJIZADEH Zoleikha, RADINEKIYAN Fateme, Reza EIVAZZADEH-KEIHAN, et al. Development of novel and green NiFe2O4/geopolymer nanocatalyst based on bentonite for synthesis of imidazole heterocycles by ultrasonic irradiations[J]. Scientific Reports, 2020, 10(1): 11671. |
| 15 | WANG Chao, XU Guogang, GU Xinyue, et al. High value-added applications of coal fly ash in the form of porous materials: A review[J]. Ceramics International, 2021, 47(16): 22302-22315. |
| 16 | KLIMA K M, SCHOLLBACH K, BROUWERS H J H, et al. Thermal and fire resistance of Class F fly ash based geopolymers—A review[J]. Construction and Building Materials, 2022, 323: 126529. |
| 17 | DE CARVALHO Aldo Ribeiro, DA SILVA CALDERÓN-MORALES Bianca Rafaela, BORBA José Carlos, et al. Proposition of geopolymers obtained through the acid activation of iron ore tailings with phosphoric acid[J]. Construction and Building Materials, 2023, 403: 133078. |
| 18 | WANG Aiguo, ZHENG Yi, ZHANG Zuhua, et al. The durability of alkali-activated materials in comparison with ordinary Portland cements and concretes: A review[J]. Engineering, 2020, 6(6): 695-706. |
| 19 | 匡敬忠, 朱陆平, 司加保, 等. 钨尾矿机械-化学活化及其与水泥水化反应机理[J]. 材料导报, 2021, 35(13): 13018-13024. |
| KUANG Jingzhong, ZHU Luping, SI Jiabao, et al. Mechanochemistry activation for tungsten tailings and hydration reaction mechanism with cement[J]. Materials Reports, 2021,35(13): 13018-13024. | |
| 20 | ZHANG Xiaolong, ZHANG Shiyu, LIU Hui, et al. Disposal of mine tailings via geopolymerization[J]. Journal of Cleaner Production, 2021, 284: 124756. |
| 21 | TOME Sylvain, BEWA Christelle N, NANA Achile, et al. Structural and physico-mechanical investigations of mine tailing-calcined kaolinite based phosphate geopolymer binder[J]. Silicon, 2022,14(7): 3563-3570. |
| 22 | FERREIRA Igor Crego, Roberto GALÉRY, HENRIQUES Andréia Bicalho, et al. Reuse of iron ore tailings for production of metakaolin-based geopolymers[J]. Journal of Materials Research and Technology, 2022, 18: 4194-4200. |
| 23 | HAN Fanghui, LI Li, SONG Shaomin, et al. Early-age hydration characteristics of composite binder containing iron tailing powder[J]. Powder Technology, 2017, 315: 322-331. |
| 24 | FIGUEIREDO Ricardo A M, SILVEIRA Ana B M, MELO Eduardo L P, et al. Mechanical and chemical analysis of one-part geopolymers synthesised with iron ore tailings from Brazil[J]. Journal of Materials Research and Technology, 2021, 14: 2650-2657. |
| 25 | GUO Bin, PAN De’an, LIU Bo, et al. Immobilization mechanism of Pb in fly ash-based geopolymer[J]. Construction and Building Materials, 2017, 134: 123-130. |
| 26 | QIAN Xin, YANG Heng, WANG Jialai, et al. Nanosilica in-situ produced with sodium silicate as a performance enhancing additive for concretes[J]. Cement and Concrete Composites, 2023, 142: 105198. |
| 27 | SUN Zengqing, VOLLPRACHT Anya. Leaching of monolithic geopolymer mortars[J]. Cement and Concrete Research, 2020, 136: 106161. |
| 28 | SAEDI Alieh, Ahmad JAMSHIDI-ZANJANI, DARBAN Ahmad Khodadadi. A review on different methods of activating tailings to improve their cementitious property as cemented paste and reusability[J]. Journal of Environmental Management, 2020, 270:110881. |
| 29 | TIAN Lingyu, HE Dongpo, ZHAO Jianing, et al. Durability of geopolymers and geopolymer concretes: A review[J]. Reviews on Advanced Materials Science, 2021, 60(1): 1-14. |
| 30 | GADO R A, HEBDA Marek, Michal ŁACH, et al. Alkali activation of waste clay bricks: Influence of the silica modulus, SiO2/Na2O, H2O/Na2O molar ratio, and liquid/solid ratio[J]. Materials, 2020, 13(2): 383. |
| 31 | DO CARMO E SILVA DEFÁVERI Keoma, DOS SANTOS Letícia Figueiredo, FRANCO DE CARVALHO José Maria, et al. Iron ore tailing-based geopolymer containing glass wool residue: A study of mechanical and microstructural properties[J]. Construction and Building Materials, 2019, 220: 375-385. |
| 32 | SHI Zhenguo, SHI Caijun, WAN Shu, et al. Effects of alkali dosage and silicate modulus on alkali-silica reaction in alkali-activated slag mortars[J]. Cement and Concrete Research, 2018, 111: 104-115. |
| 33 | LEONG Hsiao Yun, Dominic Ek Leong ONG, SANJAYAN Jay G, et al. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer[J]. Construction and Building Materials, 2016, 106: 500-511. |
| 34 | CHEN Haohua, Arash NIKVAR-HASSANI, ORMSBY Stefka, et al. Mechanical and microstructural investigations on the low-reactive copper mine tailing-based geopolymer activated by phosphoric acid[J]. Construction and Building Materials, 2023, 393: 132030. |
| 35 | LIN Hui, LIU Hui, LI Yue, et al. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures[J]. Cement and Concrete Research, 2021, 144: 106425. |
| 36 | 沙东, 王宝民, 潘宝峰, 等.地质聚合物强化增韧方法研究综述[J].复合材料学报, 2024, 41(3): 1215-1225. |
| SHA Dong, WANG Baoming, PAN Baofeng, et al. A Review on reinforcing and toughening methods of geopolymers[J]. Journal of Composite Materials, 2024, 41(3): 1215-1225. | |
| 37 | RATHEE Manali, MISRA Anurag, KOLLEBOYINA Jayaramulu, et al. Study of mechanical properties of geopolymer mortar prepared with fly ash and GGBS[J]. Materials Today: Proceedings, 2023, 93: 377-386. |
| 38 | REN Quanming, LI Xiaozhao, JI Yukun, et al. Thermal insulation of phenolic resin modified fly ash geopolymer[J]. Construction and Building Materials, 2023, 409: 133840. |
| 39 | HAJIMOHAMMADI Ailar, Tuan NGO, VONGSVIVUT Jitraporn. Interfacial chemistry of a fly ash geopolymer and aggregates[J]. Journal of Cleaner Production, 2019, 231: 980-989. |
| 40 | MOHAMMED Bashar S, HARUNA Sani, WAHAB M M A, et al. Mechanical and microstructural properties of high calcium fly ash one-part geopolymer cement made with granular activator[J]. Heliyon, 2019, 5(9): e02255. |
| 41 | LI Yong, LIU Xiaoming, LI Zepeng, et al. Preparation, characterization and application of red mud, fly ash and desulfurized gypsum based eco-friendly road base materials[J]. Journal of Cleaner Production, 2021, 284: 124777. |
| [1] | 梁永琪, 汤健, 夏恒, 陈佳昆, 乔俊飞. 基于耦合数值仿真的基准工况下焚烧炉内颗粒物浓度建模与分析[J]. 化工进展, 2024, 43(S1): 106-120. |
| [2] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
| [3] | 张世蕊, 范朕连, 宋慧平, 张丽娜, 高宏宇, 程淑艳, 程芳琴. 粉煤灰负载光催化材料的研究进展[J]. 化工进展, 2024, 43(7): 4043-4058. |
| [4] | 姚福春, 毕莹莹, 刘超, 唐晨, 李泽莹, 张耀宗, 孙晓明. 矩阵分析法优化臭氧膜接触传质技术[J]. 化工进展, 2024, 43(11): 6553-6562. |
| [5] | 张柏林, 杨泽宇, 张生杨, 刘波, 张深根. 废旧风电叶片在建筑材料中的应用[J]. 化工进展, 2024, 43(11): 6260-6270. |
| [6] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
| [7] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
| [8] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
| [9] | 陈佳昆, 汤健, 夏恒, 乔俊飞. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072. |
| [10] | 尹晓云, 付林浩, 李佳忆, 程思杰, 敬加强, MASTOBAEV Boris N, 孙杰. 稠油水环输送管道再启动压降特性分析[J]. 化工进展, 2023, 42(11): 5669-5679. |
| [11] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
| [12] | 丁兴江, 章学来, 朱嘉豪, 毛发, 房满庭, 冯天平. 三水合乙酸钠复合相变材料过冷特性实验统计分析[J]. 化工进展, 2022, 41(11): 5946-5960. |
| [13] | 黄嘉绮, 葛圆圆, 李志礼, 王艺频, 崔学民. 生物炭/地聚物复合膜的制备及其对四环素的去除[J]. 化工进展, 2022, 41(1): 427-434. |
| [14] | 马志斌, 张学里, 郭彦霞, 程芳琴. 循环流化床粉煤灰理化特性及元素溶出行为研究进展[J]. 化工进展, 2021, 40(6): 3058-3071. |
| [15] | 刘少斌, 齐宏, 余智强, 何明键, 于喜奎. 基于Taguchi方法的微小通道性能分析与参数优化[J]. 化工进展, 2021, 40(12): 6409-6422. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |