化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6260-6270.DOI: 10.16085/j.issn.1000-6613.2023-1894
• 材料科学与技术 • 上一篇
张柏林1,2(), 杨泽宇1, 张生杨1, 刘波1, 张深根1(
)
收稿日期:
2023-10-27
修回日期:
2023-11-29
出版日期:
2024-11-15
发布日期:
2024-12-07
通讯作者:
张深根
作者简介:
张柏林(1991—),男,博士研究生,研究方向为材料循环利用。E-mail:zhangbolin@ustb.edu.cn。
基金资助:
ZHANG Bolin1,2(), YANG Zeyu1, ZHANG Shengyang1, LIU Bo1, ZHANG Shengen1(
)
Received:
2023-10-27
Revised:
2023-11-29
Online:
2024-11-15
Published:
2024-12-07
Contact:
ZHANG Shengen
摘要:
风力发电已成为了现代能源体系的主要支柱。风力发电机组退役后,废旧风电叶片因难破碎、难降解等面临资源化难题,亟需探索绿色经济的资源化路径。针对当前以玻璃纤维增强树脂基复合材料(fiber reinforced polymer,FRP)为主的风电叶片,本文概述了风电叶片梯次利用的策略和主要方法,简要介绍了机械法、热法和化学法等方法的工艺特点和优劣势。由于叶片中缺乏高价值组分,现有回收方法如无政府补贴或产废单位承担处理费用,均较难产生可观的经济效益。因此,工序简单的机械法回收废旧叶片用于强化建筑材料具有较好的经济效益和应用前景。本文重点总结了废旧风电叶片FRP材料作为混凝土、水泥胶砂和地质聚合物等建筑材料增强剂的研究进展。废旧叶片FRP材料可为建筑材料提供良好的抗拉和抗弯应力,断裂软化后仍可通过桥接作用转移应力,从而实现对建筑材料的强化。但FRP材料与水泥界面区域的结合强度不足,且FRP材料降低了建筑材料的密度,可导致建筑材料抗压强度下降。进一步研究应重点改善FRP材料与水泥的结合强度,优化掺杂比例和FRP材料尺寸,以提高建筑材料的整体性能。总体而言,废旧叶片FRP材料的掺混比例不宜过高,才能保证建筑材料的强度,但混凝土、水泥胶砂等建筑材料用量极大,极小的掺混比例既可完全消纳废旧叶片。
中图分类号:
张柏林, 杨泽宇, 张生杨, 刘波, 张深根. 废旧风电叶片在建筑材料中的应用[J]. 化工进展, 2024, 43(11): 6260-6270.
ZHANG Bolin, YANG Zeyu, ZHANG Shengyang, LIU Bo, ZHANG Shengen. Utilization of waste wind turbine blade in building materials[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6260-6270.
1 | GLOBAL WIND ENERGY COUNCIL. Global Wind Report 2023[EB/OL]. (2023-03-27) [2023-10-15]. . |
2 | 国家能源局. 我国风电光伏发电总装机突破8亿千瓦[EB/OL]. (2023-05-25) [2023-06-09]. . |
National Energy Administration. China’s wind power and photovoltaic power generation total installed capacity exceeded 800 GW[EB/OL]. (2023-05-25) [2023-06-09]. . | |
3 | 陈吉朋, 王计安, 张雨秋, 等. 废弃风电叶片材料回收与再制造技术的研究进展[J]. 太阳能学报, 2023, 44(5): 328-335. |
CHEN Jipeng, WANG Ji’an, ZHANG Yuqiu, et al. Progress on recycling methods and remanufacturing technology of waste wind turbine blades[J]. Acta Energiae Solaris Sinica, 2023, 44(5): 328-335. | |
4 | AZIZI Mahdi, JAHANGIRIAN Alireza. Multi-site aerodynamic optimization of wind turbine blades for maximum annual energy production in East Iran[J]. Energy Science & Engineering, 2020, 8(6): 2169-2186. |
5 | CAO Dongyang, MALAKOOTI Sadeq, KULKARNI Vijay N, et al. The effect of resin uptake on the flexural properties of compression molded sandwich composites[J]. Wind Energy, 2022, 25(1): 71-93. |
6 | BEAUSON Justine, MADSEN Bo, TONCELLI Chiara, et al. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites[J]. Composites A: Applied Science and Manufacturing, 2016, 90: 390-399. |
7 | 123米!全球最长风电叶片在中复连众下线[J]. 中国建材, 2022, 71(9): 119. |
123 | meters! The world’s longest wind turbine blade is connected to the assembly line in China[J]. China Building Materials, 2022, 71(9): 119. |
8 | TAHIR Mazin, RAHIMIZADEH Amirmohammad, KALMAN Jordan, et al. Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste[J]. Polymer Composites, 2021, 42(9): 4533-4548. |
9 | FONTE Rosario, XYDIS George. Wind turbine blade recycling: An evaluation of the European market potential for recycled composite materials[J]. Journal of Environmental Management, 2021, 287: 112269. |
48 | ZHANG Mo, QIU Xinxin, SHEN Si, et al. Mechanical and thermal insulation properties of rGFRP fiber-reinforced lightweight fly-ash-slag-based geopolymer mortar[J]. Sustainability, 2023, 15(9): 7200. |
49 | FIGIELA Beate, KORNIEJENKO K, ŁACH M, et al. A study on geopolymer composites based on waste from wind turbine blades[J]. Materialwissenschaft und Werkstofftechnik, 2022, 53(4): 467-478. |
50 | Kinga PŁAWECKA, Jakub PRZYBYŁA, KORNIEJENKO Kinga, et al. Recycling of mechanically ground wind turbine blades as filler in geopolymer composite[J]. Materials, 2021, 14(21): 6539. |
51 | NOVAIS Rui M, CARVALHEIRAS João, CAPELA Marinélia N, et al. Incorporation of glass fibre fabrics waste into geopolymer matrices: An eco-friendly solution for off-cuts coming from wind turbine blade production[J]. Construction and Building Materials, 2018, 187: 876-883. |
52 | NOVAIS Rui M, CARVALHEIRAS J, SEABRA M P, et al. Effective mechanical reinforcement of inorganic polymers using glass fibre waste[J]. Journal of Cleaner Production, 2017, 166: 343-349. |
10 | YAZDANBAKHSH Ardavan, BANK Lawrence C, RIEDER Klaus-Alexander, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades[J]. Resources, Conservation and Recycling, 2018, 128: 11-21. |
11 | TAZI Nacef, KIM Junbeum, BOUZIDI Youcef, et al. Waste and material flow analysis in the end-of-life wind energy system[J]. Resources, Conservation and Recycling, 2019, 145: 199-207. |
12 | 沈德昌. 回望我国第一座陆上风电场[J]. 太阳能, 2019(2): 35-36. |
SHEN Dechang. Review of China’s first onshore wind farm[J]. Solar Energy, 2019(2): 35-36. | |
13 | PENDER Kyle, YANG Liu. Regenerating performance of glass fibre recycled from wind turbine blade[J]. Composites Part B: Engineering, 2020, 198: 108230. |
14 | SUSCHEM. Polymer composites circularity (White Paper)[EB/OL]. [2023-10-17]. . |
15 | 张柏林, 张生杨, 邬博宇, 等. 废旧风力发电机叶片资源化利用研究进展[J]. 工程科学学报, 2023, 45(12): 2150-2161. |
ZHANG Bolin, ZHANG Shengyang, WU Boyu, et al. Progress in resource utilization of waste wind turbine blades[J]. Chinese Journal of Engineering, 2023, 45(12): 2150-2161. | |
16 | JANI Hardik K, SINGH KACHHWAHA Surendra, NAGABABU Garlapati, et al. A brief review on recycling and reuse of wind turbine blade materials[J]. Materials Today: Proceedings, 2022, 62: 7124-7130. |
17 | KORNIEJENKO Kinga, KOZUB Barbara, Agnieszka BĄK, et al. Tackling the circular economy challenges—Composites recycling: Used tyres, wind turbine blades, and solar panels[J]. Journal of Composites Science, 2021, 5(9): 243. |
18 | 张少辉, 王艳, 牛荻涛. 废旧纤维在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(23): 23042-23050. |
ZHANG Shaohui, WANG Yan, NIU Ditao. Research progress of the application of waste fiber in cement-based materials[J]. Materials Reports, 2020, 34(23): 23042-23050. | |
19 | BEAUSON Justine, LILHOLT Hans, Povl BRØNDSTED. Recycling solid residues recovered from glass fibre-reinforced composites—A review applied to wind turbine blade materials[J]. Journal of Reinforced Plastics and Composites, 2014, 33(16): 1542-1556. |
20 | SOMMER Valentin, WALTHER Grit. Recycling and recovery infrastructures for glass and carbon fiber reinforced plastic waste from wind energy industry: A European case study[J]. Waste Management, 2021, 121: 265-275. |
21 | RATHORE Neelam, PANWAR Narayan Lal. Environmental impact and waste recycling technologies for modern wind turbines: An overview[J]. Waste Management & Research, 2023, 41(4): 744-759. |
22 | LIU Pu, MENG Fanran, BARLOW Claire Y. Wind turbine blade end-of-life options: An economic comparison[J]. Resources, Conservation and Recycling, 2022, 180: 106202. |
23 | MANJEET Rani, PRIYANKA Choudhary, VENKATA Krishnan, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades[J]. Composites B: Engineering, 2021, 215: 108768. |
24 | JOUSTRA Jelle, FLIPSEN Bas, BALKENENDE Ruud. Structural reuse of high end composite products: A design case study on wind turbine blades[J]. Resources, Conservation and Recycling, 2021, 167: 105393. |
25 | PAULSEN Ebbe Bagge, ENEVOLDSEN Peter. A multidisciplinary review of recycling methods for end-of-life wind turbine blades[J]. Energies, 2021, 14(14): 4247. |
26 | 姜义, 马梓涵, 申培亮, 等. 废弃混凝土碳化资源化技术研究进展[J]. 硅酸盐学报, 2023, 51(9): 2433-2445. |
JIANG Yi, MA Zihan, SHEN Peiliang, et al. Research progress on carbonation technologies for valorising waste concrete: A review[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2433-2445. | |
27 | 畅莹, 冯立超, 刘卫生, 等. 废弃FRP的高效破碎及在沥青中应用[J]. 中国设备工程, 2017(2): 170-171. |
CHANG Ying, FENG Lichao, LIU Weisheng, et al. Efficient crushing of waste FRP and its application in asphalt[J]. China Plant Engineering, 2017(2): 170-171. | |
28 | YAZDANBAKHSH Ardavan, BANK Lawrence C, CHEN Chen. Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete[J]. Construction and Building Materials, 2016, 121: 278-284. |
29 | YAZDANBAKHSH Ardavan, BANK Lawrence C, CHEN Chen, et al. FRP-needles as discrete reinforcement in concrete[J]. Journal of Materials in Civil Engineering, 2017, 29(10): 04017175. |
30 | ZHOU Yingwu, WENG Yitao, LI Limiao, et al. Recycled GFRP aggregate concrete considering aggregate grading: Compressive behavior and stress-strain modeling[J]. Polymers, 2022, 14(3): 581. |
31 | SINGH Avishreshth, CHARAK Akhil, BILIGIRI Krishna Prapoorna, et al. Glass and carbon fiber reinforced polymer composite wastes in pervious concrete: Material characterization and lifecycle assessment[J]. Resources, Conservation and Recycling, 2022, 182: 106304. |
32 | BATURKIN Dmitry, MASMOUDI Radhouane, Arezki TAGNIT-HAMOU, et al. “feasibility study on the recycling of FRP materials from wind turbine blades in concrete”[M]//Lecture Notes in Civil Engineering. Cham: Springer International Publishing, 2021: 1729-1742. |
33 | BATURKIN Dmitry, HISSEINE Ousmane A, MASMOUDI Radhouane, et al. Valorization of recycled FRP materials from wind turbine blades in concrete[J]. Resources, Conservation and Recycling, 2021, 174: 105807. |
34 | FU Bing, LIU K C, CHEN J, et al. Concrete reinforced with macro fibres recycled from waste GFRP[J]. Construction and Building Materials, 2021, 310: 125063. |
35 | XU Guangti, LIU Mingjie, XIANG Yu, et al. Valorization of macro fibers recycled from decommissioned turbine blades as discrete reinforcement in concrete[J]. Journal of Cleaner Production, 2022, 379: 134550. |
36 | 温亚菲. 废弃风电叶片资源化处置与利用工艺对比分析[J]. 再生资源与循环经济, 2023, 16(3): 41-43. |
WEN Yafei. Comparative analysis of waste wind turbine blade resource disposal and utilization processes[J]. Recyclable Resources and Circular Economy, 2023, 16(3): 41-43. | |
37 | 马文静, 张宇彤, 杨春振, 等. 大宗风电退役风机叶片资源化回收利用技术研究进展[J]. 洁净煤技术, 2023, 29(10): 17-26. |
MA Wenjing, ZHANG Yutong, YANG Chunzhen, et al. Research progress on resource recycling technology of retired wind turbine blades in bulk wind power plants[J]. Clean Coal Technology, 2023, 29(10): 17-26. | |
38 | 季节, 王颢翔, 王琴, 等. 改性废旧橡胶粉对水泥胶砂性能的影响[J]. 建筑材料学报, 2021, 24(4): 679-686. |
JI Jie, WANG Haoxiang, WANG Qin, et al. Effect of modified rubber powder on performances of cement mortar[J]. Journal of Building Materials, 2021, 24(4): 679-686. | |
39 | MAMANPUSH Seyed Hossein, LI Hui, ENGLUND Karl, et al. Recycled wind turbine blades as a feedstock for second generation composites[J]. Waste Management, 2018, 76: 708-714. |
40 | RODIN Harry, NASSIRI Somayeh, ENGLUND Karl, et al. Recycled glass fiber reinforced polymer composites incorporated in mortar for improved mechanical performance[J]. Construction and Building Materials, 2018, 187: 738-751. |
41 | HAIDER Md Mostofa, NASSIRI Somayeh, ENGLUND Karl, et al. Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar[J]. Transportation Research Record: Journal of the Transportation Research Board, 2021, 2675(10): 1254-1267. |
42 | ZHOU Boyu, ZHANG Mo, WANG Li, et al. Experimental study on mechanical property and microstructure of cement mortar reinforced with elaborately recycled GFRP fiber[J]. Cement and Concrete Composites, 2021, 117: 103908. |
43 | 于雪梅, 朱晓华, 刘卫生, 等. 废弃风电叶片切割装置设计及破碎料的应用[J]. 工程塑料应用, 2018, 46(6): 60-64. |
YU Xuemei, ZHU Xiaohua, LIU Weisheng, et al. Design of cutting device for wasted wind turbine blades and application of debris[J]. Engineering Plastics Application, 2018, 46(6): 60-64. | |
44 | NGUYEN Hoang, CARVELLI Valter, FUJII Toru, et al. Cement mortar reinforced with reclaimed carbon fibres, CFRP waste or prepreg carbon waste[J]. Construction and Building Materials, 2016, 126: 321-331. |
45 | BINI M P M, ANTUNES M L P, SOTTOVIA L. Estudo da Incorporação de Resíduo de Fabricação de Pás Eólicas para Aerogeradores em Cimento Portland[C]//3rd International Workshop | Advances in Cleaner Production, São Paulo, 2011. |
46 | OLIVEIRA Paulo Silas, ANTUNES Maria Lúcia Pereira, CRUZ Nilson Cristino DA, et al. Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction[J]. Journal of Cleaner Production, 2020, 274: 122948. |
47 | 魏铭, 张长森, 王旭, 等. 微纳米材料改性地质聚合物的研究进展[J]. 材料导报, 2023, 37(4): 254-263. |
WEI Ming, ZHANG Changsen, WANG Xu, et al. Alkali-activated materials modified with micro-nano additives: A review[J]. Materials Reports, 2023, 37(4): 254-263. |
[1] | 张政, 刘琳, 李子晨, 王梦琦, 黄春燕, 葛圆圆. 载铜地质聚合物微球的制备及其催化降解双酚S的性能[J]. 化工进展, 2024, 43(9): 5290-5301. |
[2] | 付涛, 李立, 高莉宁, 朱富维, 曹炜烨, 陈华鑫. 水泥基硼掺杂石墨相氮化碳降解NO[J]. 化工进展, 2024, 43(8): 4403-4410. |
[3] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[4] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
[5] | 郭若楠, 易臻伟, 王涛, 宋佳奕, 方梦祥. 二氧化碳养护混凝土活性组分固碳率评价方法[J]. 化工进展, 2022, 41(5): 2722-2732. |
[6] | 黄嘉绮, 葛圆圆, 李志礼, 王艺频, 崔学民. 生物炭/地聚物复合膜的制备及其对四环素的去除[J]. 化工进展, 2022, 41(1): 427-434. |
[7] | 刘竞, 苗同梦, 姜子清, 徐永杰, 钟子龙, 郁培云. 混凝土表层防护涂料研究进展[J]. 化工进展, 2021, 40(10): 5615-5623. |
[8] | 于楠, 陈超, 蔺洁, 韩枫涛, 邹平, 贺祎鹏, 胡庆玲. 应用于太阳能相变蓄热PC构件升温养护建筑的复合相变材料热物性[J]. 化工进展, 2021, 40(1): 297-304. |
[9] | 罗立群, 舒伟, 程琪林, 谭旭升. 铁尾矿加气混凝土制备工艺及结构形成机理分析[J]. 化工进展, 2017, 36(04): 1482-1490. |
[10] | 马小莉, 相玉琳. 改性污泥制备泡沫混凝土的可行性研究[J]. 化工进展, 2016, 35(09): 2997-3001. |
[11] | 王 程,霍冀川,雷永林,李 娴,袁艳红,刘佳奇,高 娟. 改性酵母蛋白制备混凝土发泡剂及其处理条件优化 [J]. 化工进展, 2011, 30(3): 621-. |
[12] | 严捍东,麻秀星,黄国晖. 废橡胶集料对水泥基材料变形和耐久性影响的研究现状 [J]. 化工进展, 2008, 27(3): 395-. |
[13] | 姜 玉;庞 浩;廖 兵. 聚羧酸系高效减水剂的研究和应用 [J]. 化工进展, 2007, 26(1): 37-. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 144
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |