化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 189-208.DOI: 10.16085/j.issn.1000-6613.2024-1077
王波1(), 王斌1,2, 龚翔1,2(), 杨福胜1,2, 方涛1,2()
收稿日期:
2024-07-05
修回日期:
2024-08-24
出版日期:
2024-11-20
发布日期:
2024-12-06
通讯作者:
龚翔,方涛
作者简介:
王波(1999—),男,博士研究生,研究方向为有机液态储氢技术。E-mail:wb15281123670@stu.edu.cn。
基金资助:
WANG Bo1(), WANG Bin1,2, GONG Xiang1,2(), YANG Fusheng1,2, FANG Tao1,2()
Received:
2024-07-05
Revised:
2024-08-24
Online:
2024-11-20
Published:
2024-12-06
Contact:
GONG Xiang, FANG Tao
摘要:
有机液态储氢载体(liquid organic hydrogen carriers, LOHC)技术是一种应用前景广阔的液态储氢技术,但LOHC脱氢过程中动力学缓慢等问题制约了该技术发展,基于动力学和传热传质强化的反应器设计是必然选择。本文分析了有机液态储氢载体脱氢反应动力学性能强化机制,指出催化剂表面高反应物浓度和高温是高反应速率的关键,且需减少副产物和催化剂失活。提出了传热强化、传质强化策略,以固定床反应器为例介绍了强化传热的目标和措施,指出了强化传质应提高外扩散速率并避免内扩散的影响。简述了多种类型LOHC“气液固”三相反应器的研究进展及其强化策略,最后总结了这些反应器的特点并提出了可能的新型反应器设计方向。可为针对有机液态储氢材料脱氢过程的新型反应器开发提供理论思路和参考依据。
中图分类号:
王波, 王斌, 龚翔, 杨福胜, 方涛. 基于反应器设计的有机液态储氢载体脱氢反应强化研究进展[J]. 化工进展, 2024, 43(S1): 189-208.
WANG Bo, WANG Bin, GONG Xiang, YANG Fusheng, FANG Tao. Enhancing dehydrogenation performance of liquid organic hydrogen carriers based on reactor design: Research progress[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 189-208.
序号 | LOHC-/LOHC+ | 储氢密度(质量分数)/% | 脱氢焓/kJ·mol-1 | LOHC-熔点/℃ | LOHC+沸点/℃ |
---|---|---|---|---|---|
1 | TOL/MCH | 6.2 | 68.3 | -95 | 101 |
2 | NEC/12H-NEC | 5.8 | 47.5 | 68 | 280 |
3 | NAP/十氢萘 | 7.3 | 63.9 | -37 | 189 |
4 | DBT/18H-DBT | 6.2 | 65.4 | -34 | 370 |
5 | BT/12H-BT | 6.2 | 63.5 | -30 | 270 |
6 | 1-MID/8H-1-MID | 5.8 | 51.9 | 95 | 180 |
表1 LOHC理化性质
序号 | LOHC-/LOHC+ | 储氢密度(质量分数)/% | 脱氢焓/kJ·mol-1 | LOHC-熔点/℃ | LOHC+沸点/℃ |
---|---|---|---|---|---|
1 | TOL/MCH | 6.2 | 68.3 | -95 | 101 |
2 | NEC/12H-NEC | 5.8 | 47.5 | 68 | 280 |
3 | NAP/十氢萘 | 7.3 | 63.9 | -37 | 189 |
4 | DBT/18H-DBT | 6.2 | 65.4 | -34 | 370 |
5 | BT/12H-BT | 6.2 | 63.5 | -30 | 270 |
6 | 1-MID/8H-1-MID | 5.8 | 51.9 | 95 | 180 |
序号 | 反应器 | LOHC体系 | 强化策略 | 温度,压力 | 脱氢性能 | 参考 文献 |
---|---|---|---|---|---|---|
1 | 批式反应釜 | DBT | 加氢/脱氢循环 | 加氢:140~200℃,3~4MPa 脱氢270℃,320℃ | 加氢率100%;脱氢率50%~80% | [ |
2 | 批式烧瓶 | DBT | 降低副产物 | 脱氢310℃,0.1MPa | 最大产氢能力4g/(gcat·min) 最低副产物2% | [ |
3 | 微分反应器 | DBT | 更准确的反应速率 | 脱氢250~340℃,0.1MPa, WHSV 0.5~67h-1 | 转化率范围30%~54% | [ |
4 | 列管式固定床 | BT | 均匀温度分布 | 脱氢348~364℃,0.1MPa, LHSV 0.6~1.2h-1 | 2.3m3/h(标准状况),脱氢程度大于90% | [ |
5 | 热管式固定床 | MCH | 传热强化 | 脱氢260~370℃,0.1MPa, LHSV 2~8h-1 | 脱氢程度100%,重整效率80% | [ |
6 | 交叉反向固定床 | BT | 传热强化 | 脱氢280~320℃,0.4MPa, 原料流率50mL/min | 脱氢程度小于70%,能量密度是传统反应器的2.3倍 | [ |
7 | 整体涂层式反应器 | NEC | 传热强化、传质强化 | 脱氢220~260℃,0.1MPa, 原料流率0.5~4mL/min | 最大氢气产率65%,最大生产能力为 1.27 | [ |
8 | “湿干”多相反应器 | 环己烷、MCH、萘 | 催化剂表面高温 | 脱氢250~400℃,0.1MPa, 环己烷1mL,萘0.75mL | 环己烷/MCH/萘最大反应速率常数分别为8mmol/min、6.5mmol/min和5.7mmol/min | [ |
9 | 微通道反应器 | DBT | 传热强化、传质强化 | 脱氢260~320℃,0.1MPa, 0.01mL/min | 最大氢气产率82%,氢气纯度99.99% | [ |
10 | 径向流动反应器 | DBT | 传热强化、反应动力学强化 | 脱氢340℃, 0.2MPa/0.3MPa/0.4MPa 0.38mL/min | 脱氢程度18%~24%。氢气纯度99.999%,1.15 | [ |
11 | 膜反应器 | MCH | 传质强化、反应动力学强化 | 脱氢350℃,0.9MPa 标准停留时间250kg·s/m3 | 转化率95%,H2/N2选择性大于85000 | [ |
12 | 反应精馏 | BT | 传热强化、反应动力学强化 | 脱氢300℃,0.1MPa 0.2~0.8g/min | 氢气流量280mL/min,脱氢程度80%,0.35 | [ |
13 | 加氢脱氢一体化反应器 | DBT | 加氢脱氢循环 | 加氢:300℃,3MPa 脱氢:290℃,0.2MPa | 脱氢率70% 1.2 | [ |
表2 不同类型反应器的对比
序号 | 反应器 | LOHC体系 | 强化策略 | 温度,压力 | 脱氢性能 | 参考 文献 |
---|---|---|---|---|---|---|
1 | 批式反应釜 | DBT | 加氢/脱氢循环 | 加氢:140~200℃,3~4MPa 脱氢270℃,320℃ | 加氢率100%;脱氢率50%~80% | [ |
2 | 批式烧瓶 | DBT | 降低副产物 | 脱氢310℃,0.1MPa | 最大产氢能力4g/(gcat·min) 最低副产物2% | [ |
3 | 微分反应器 | DBT | 更准确的反应速率 | 脱氢250~340℃,0.1MPa, WHSV 0.5~67h-1 | 转化率范围30%~54% | [ |
4 | 列管式固定床 | BT | 均匀温度分布 | 脱氢348~364℃,0.1MPa, LHSV 0.6~1.2h-1 | 2.3m3/h(标准状况),脱氢程度大于90% | [ |
5 | 热管式固定床 | MCH | 传热强化 | 脱氢260~370℃,0.1MPa, LHSV 2~8h-1 | 脱氢程度100%,重整效率80% | [ |
6 | 交叉反向固定床 | BT | 传热强化 | 脱氢280~320℃,0.4MPa, 原料流率50mL/min | 脱氢程度小于70%,能量密度是传统反应器的2.3倍 | [ |
7 | 整体涂层式反应器 | NEC | 传热强化、传质强化 | 脱氢220~260℃,0.1MPa, 原料流率0.5~4mL/min | 最大氢气产率65%,最大生产能力为 1.27 | [ |
8 | “湿干”多相反应器 | 环己烷、MCH、萘 | 催化剂表面高温 | 脱氢250~400℃,0.1MPa, 环己烷1mL,萘0.75mL | 环己烷/MCH/萘最大反应速率常数分别为8mmol/min、6.5mmol/min和5.7mmol/min | [ |
9 | 微通道反应器 | DBT | 传热强化、传质强化 | 脱氢260~320℃,0.1MPa, 0.01mL/min | 最大氢气产率82%,氢气纯度99.99% | [ |
10 | 径向流动反应器 | DBT | 传热强化、反应动力学强化 | 脱氢340℃, 0.2MPa/0.3MPa/0.4MPa 0.38mL/min | 脱氢程度18%~24%。氢气纯度99.999%,1.15 | [ |
11 | 膜反应器 | MCH | 传质强化、反应动力学强化 | 脱氢350℃,0.9MPa 标准停留时间250kg·s/m3 | 转化率95%,H2/N2选择性大于85000 | [ |
12 | 反应精馏 | BT | 传热强化、反应动力学强化 | 脱氢300℃,0.1MPa 0.2~0.8g/min | 氢气流量280mL/min,脱氢程度80%,0.35 | [ |
13 | 加氢脱氢一体化反应器 | DBT | 加氢脱氢循环 | 加氢:300℃,3MPa 脱氢:290℃,0.2MPa | 脱氢率70% 1.2 | [ |
1 | CHO Hannah Hyunah, STREZOV Vladimir, EVANS Tim J. A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies[J]. Sustainable Materials and Technologies, 2023, 35: e00567. |
2 | 毛宗强. 氢能: 21世纪的绿色能源: 21世纪可持续能源丛书[M]. 北京: 化学工业出版社, 2005. |
MAO Zongqiang. Hydrogen energy: Green energy in the 21st century: Series of sustainable energy in the 21st century[M]. Beijing: Chemical Industry Press, 2005. | |
3 | NIKOLAIDIS Pavlos, POULLIKKAS Andreas. A comparative overview of hydrogen production processes[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 597-611. |
4 | HORMAZA MEJIA Alejandra, BROUWER Jacob, KINNON Michael MAC. Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8810-8826. |
5 | SAZALI Norazlianie. Emerging technologies by hydrogen: A review[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18753-18771. |
6 | RAO Purna, YOON Minyoung. Potential liquid-organic hydrogen carrier (LOHC) systems: A review on recent progress[J]. Energies, 2020, 13(22): 6040. |
7 | PREUSTER Patrick, PAPP Christian, WASSERSCHEID Peter. Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy[J]. Accounts of Chemical Research, 2017, 50(1): 74-85. |
8 | NIERMANN Matthias, BECKENDORFF Alexander, KALTSCHMITT Martin, et al. Liquid organic hydrogen carrier (LOHC)—Assessment based on chemical and economic properties[J]. International Journal of Hydrogen Energy, 2019, 44(13): 6631-6654. |
9 | Yeongin JO, Jinho OH, KIM Donghyeon, et al. Recent progress in dehydrogenation catalysts for heterocyclic and homocyclic liquid organic hydrogen carriers[J]. Korean Journal of Chemical Engineering, 2022, 39(1): 20-37. |
10 | ABOUL-GHEIT A K, AWADALLAH A E, ABDEL-HAMID S M, et al. Reactions of cyclohexane on platinum, palladium, or iridium-loaded H-ZSM-5 zeolite hydrohalogenated catalysts[J]. Petroleum Science and Technology, 2011, 29(19): 1984-1994. |
11 | Emilija RAKIĆ, GRILC Miha, LIKOZAR Blaž. Liquid organic hydrogen carrier hydrogenation-dehydrogenation: From ab initio catalysis to reaction micro-kinetics modelling[J]. Chemical Engineering Journal, 2023, 472: 144836. |
12 | 薛景文, 于鹏飞, 张彦康, 等. 液态有机氢载体储氢系统脱氢反应器研究进展[J]. 热力发电, 2022, 51(11): 1-10. |
XUE Jingwen, YU Pengfei, ZHANG Yankang, et al. Review on advances of dehydrogenation reactor for hydrogen storage system using liquid organic hydrogen carrier[J]. Thermal Power Generation, 2022, 51(11): 1-10. | |
13 | MODISHA Phillimon M, OUMA Cecil N M, GARIDZIRAI Rudaviro, et al. The prospect of hydrogen storage using liquid organic hydrogen carriers[J]. Energy & Fuels, 2019, 33(4): 2778-2796. |
14 | VALENTINI Federica, MARROCCHI Assunta, VACCARO Luigi. Liquid organic hydrogen carriers (LOHCs) as H-source for bio-derived fuels and additives production[J]. Advanced Energy Materials, 2022, 12(13): 2103362. |
15 | WILLER Miriam, PREUSTER Patrick, Michael GEIßELBRECHT, et al. Continuous dehydrogenation of perhydro benzyltoluene and perhydro dibenzyltoluene in a packed bed vertical tubular reactor—The role of LOHC evaporation[J]. International Journal of Hydrogen Energy, 2024, 57: 1513-1523. |
16 | HORIKOSHI Satoshi, KAMATA Momoko, SUMI Takuya, et al. Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: Temperature distribution in the fixed-bed reactor[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12029-12037. |
17 | BOLLMANN Jonas, SCHMIDT Nikolas, BECK Dominik, et al. A path to a dynamic hydrogen storage system using a liquid organic hydrogen carrier (LOHC): Burner-based direct heating of the dehydrogenation unit[J]. International Journal of Hydrogen Energy, 2023, 48(3): 1011-1023. |
18 | BOLLMANN Jonas, Kerstin MITLÄNDER, BECK Dominik, et al. Burner-heated dehydrogenation of a liquid organic hydrogen carrier (LOHC) system[J]. International Journal of Hydrogen Energy, 2023, 48(77): 30039-30056. |
19 | HEUBLEIN Norbert, STELZNER Malte, SATTELMAYER Thomas. Hydrogen storage using liquid organic carriers: Equilibrium simulation and dehydrogenation reactor design[J]. International Journal of Hydrogen Energy, 2020, 45(46): 24902-24916. |
20 | SOLYMOSI Thomas, Michael GEIßELBRECHT, MAYER Sophie, et al. Nucleation as a rate-determining step in catalytic gas generation reactions from liquid phase systems[J]. Science Advances, 2022, 8(46): eade3262. |
21 | PETERS Willi, SEIDEL Alexander, HERZOG Stefan, et al. Macrokinetic effects in perhydro-N-ethylcarbazole dehydrogenation and H2 productivity optimization by using egg-shell catalysts[J]. Energy & Environmental Science, 2015, 8(10): 3013-3021. |
22 | KARIYA Nobuko, FUKUOKA Atsushi, ICHIKAWA Masaru. Efficient evolution of hydrogen from liquid cycloalkanes over Pt-containing catalysts supported on active carbons under “wet-dry multiphase conditions”[J]. Applied Catalysis A: General, 2002, 233(1/2): 91-102. |
23 | BINIWALE Rajesh B, KARIYA N, YAMASHIRO H, et al. Heat transfer and thermographic analysis of catalyst surface during multiphase phenomena under spray-pulsed conditions for dehydrogenation of cyclohexane over Pt catalysts[J]. The Journal of Physical Chemistry B, 2006, 110(7): 3189-3196. |
24 | HODOSHIMA Shinya, SHONO Atsushi, SAITO Yasukazu. Chemical recuperation of low-quality waste heats by catalytic dehydrogenation of organic chemical hydrides and its exergy analysis[J]. Energy & Fuels, 2008, 22(4): 2559-2569. |
25 | KIERMAIER Stephan, LEHMANN Daniel, Andreas BÖSMANN, et al. Dehydrogenation of perhydro-N-ethylcarbazole under reduced total pressure[J]. International Journal of Hydrogen Energy, 2021, 46(29): 15660-15670. |
26 | MENG Lie, TSURU Toshinori. Microporous membrane reactors for hydrogen production[J]. Current Opinion in Chemical Engineering, 2015, 8: 83-88. |
27 | SCHRÖDER D, PREUSTER P, EßER E, et al. LOHC-bound hydrogen for catalytic NO x reduction from O2 - rich exhaust gas[J]. International Journal of Hydrogen Energy, 2021, 46(69): 34498-34508. |
28 | SIEVI Gabriel, GEBURTIG Denise, SKELEDZIC Tanja, et al. Towards an efficient liquid organic hydrogen carrier fuel cell concept[J]. Energy & Environmental Science, 2019, 12(7): 2305-2314. |
29 | Timo RÜDE, LU Yulin, Leon ANSCHÜTZ, et al. Performance of continuous hydrogen production from perhydro benzyltoluene by catalytic distillation and heat integration concepts with a fuel cell[J]. Energy Technology, 2023, 11(3): 2201366. |
30 | SOLYMOSI T, AUER F, DÜRR S, et al. Catalytically activated stainless steel plates for the dehydrogenation of perhydro dibenzyltoluene[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34797-34806. |
31 | BULGARIN A, JORSCHICK H, PREUSTER P, et al. Purity of hydrogen released from the Liquid Organic Hydrogen Carrier compound perhydro dibenzyltoluene by catalytic dehydrogenation[J]. International Journal of Hydrogen Energy, 2020, 45(1): 712-720. |
32 | PREUSTER Patrick, FANG Qingping, PETERS Roland, et al. Solid oxide fuel cell operating on liquid organic hydrogen carrier-based hydrogen-making full use of heat integration potentials[J]. International Journal of Hydrogen Energy, 2018, 43(3): 1758-1768. |
33 | LEE Sanghun, HAN Gwangwoo, KIM Taehong, et al. Connected evaluation of polymer electrolyte membrane fuel cell with dehydrogenation reactor of liquid organic hydrogen carrier[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13398-13405. |
34 | CHU Chenyang, WU Kai, LUO Bingbing, et al. Hydrogen storage by liquid organic hydrogen carriers: Catalyst, renewable carrier, and technology—A review[J]. Carbon Resources Conversion, 2023, 6(4): 334-351. |
35 | SHI Libin, QI Suitao, QU Jifeng, et al. Integration of hydrogenation and dehydrogenation based on dibenzyltoluene as liquid organic hydrogen energy carrier[J]. International Journal of Hydrogen Energy, 2019, 44(11): 5345-5354. |
36 | HUANG Yuanchao, SI Yuxi, XIANG Ying, et al. Integration of hydrogenation and dehydrogenation based on N-ethylcarbazole as a liquid organic hydrogen carrier[J]. Industrial & Engineering Chemistry Research, 2023, 62(18): 6953-6962. |
37 | LEE Sanghun, LEE Jaemyung, KIM Taehong, et al. Pt/CeO2 catalyst synthesized by combustion method for dehydrogenation of perhydro-dibenzyltoluene as liquid organic hydrogen carrier: Effect of pore size and metal dispersion[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5520-5529. |
38 | AUER Franziska, HUPFER Alexander, Andreas BÖSMANN, et al. Influence of the nanoparticle size on hydrogen release and side product formation in liquid organic hydrogen carrier systems with supported platinum catalysts[J]. Catalysis Science & Technology, 2020, 10(19): 6669-6678. |
39 | MODISHA Phillimon, GQOGQA Pumeza, GARIDZIRAI Rudaviro, et al. Evaluation of catalyst activity for release of hydrogen from liquid organic hydrogen carriers[J]. International Journal of Hydrogen Energy, 2019, 44(39): 21926-21935. |
40 | KWAK Yeonsu, KIRK Jaewon, MOON Seongeun, et al. Hydrogen production from homocyclic liquid organic hydrogen carriers (LOHCs): Benchmarking studies and energy-economic analyses[J]. Energy Conversion and Management, 2021, 239: 114124. |
41 | YURANOV Igor, AUTISSIER Nordahl, SORDAKIS Katerina, et al. Heterogeneous catalytic reactor for hydrogen production from formic acid and its use in polymer electrolyte fuel cells[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6635-6643. |
42 | AL-SHAIKHALI Anaam H, JEDIDI Abdesslem, ANJUM Dalaver H, et al. Kinetics on NiZn bimetallic catalysts for hydrogen evolution via selective dehydrogenation of methylcyclohexane to toluene[J]. ACS Catalysis, 2017, 7(3): 1592-1600. |
43 | PARK Sanghyoun, NASEEM Mujahid, LEE Sangyong. Experimental assessment of perhydro-dibenzyltoluene dehydrogenation reaction kinetics in a continuous flow system for stable hydrogen supply[J]. Materials, 2021, 14(24): 7613. |
44 | In Seop LIM, JEONG Yoonseong, KWAK Yeonsu, et al. Maximizing clean hydrogen release from perhydro-benzyltoluene: Energy-efficient scale-up strategies and techno-economic analyses[J]. Chemical Engineering Journal, 2023, 478: 147296. |
45 | KADAR J, GACKSTATTER F, ORTNER F, et al. Boosting power density of hydrogen release from LOHC systems by an inverted fixed-bed reactor design[J]. International Journal of Hydrogen Energy, 2024, 59: 1376-1387. |
46 | BADAKHSH Arash, Junyoung CHA, PARK Yongha, et al. Autothermal recirculating reactor (ARR) with Cu-BN composite as a stable reactor material for sustainable hydrogen release from ammonia[J]. Journal of Power Sources, 2021, 506: 230081. |
47 | BADAKHSH Arash, SONG Donghyun, MOON Seongeun, et al. COX-free LOHC dehydrogenation in a heatpipe reformer highly integrated with a hydrogen burner[J]. Chemical Engineering Journal, 2022, 449: 137679. |
48 | POLUKEEV Alexey V, WALLENBERG Reine, UHLIG Jens, et al. Iridium-catalyzed dehydrogenation in a continuous flow reactor for practical on-board hydrogen generation from liquid organic hydrogen carriers[J]. ChemSusChem, 2022, 15(8): e202200085. |
49 | LI Jinjian, TONG Fengya, LI Yi, et al. Dehydrogenation of dodecahydro-N-ethylcarbazole over spinel supporting catalyst in a continuous flow fixed bed reactor[J]. Fuel, 2022, 321: 124034. |
50 | XIA Zhijun, LU Hanfeng, LIU Huayan, et al. Cyclohexane dehydrogenation over Ni-Cu/SiO2 catalyst: Effect of copper addition[J]. Catalysis Communications, 2017, 90: 39-42. |
51 | XIA Zhijun, LIU Huayan, LU Hanfeng, et al. Study on catalytic properties and carbon deposition of Ni-Cu/SBA-15 for cyclohexane dehydrogenation[J]. Applied Surface Science, 2017, 422: 905-912. |
52 | PETERS W, EYPASCH M, FRANK T, et al. Efficient hydrogen release from perhydro-N-ethylcarbazole using catalyst-coated metallic structures produced by selective electron beam melting[J]. Energy & Environmental Science, 2015, 8(2): 641-649. |
53 | JAVAID Rahat, KAWASAKI Shin-Ichiro, SUZUKI Akira, et al. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors[J]. Beilstein Journal of Organic Chemistry, 2013, 9: 1156-1163. |
54 | JAVAID Rahat, QAZI Umair Yaqub, KAWASAKI Shin-Ichiro. Efficient and continuous decomposition of hydrogen peroxide using a silica capillary coated with a thin palladium or platinum layer[J]. Bulletin of the Chemical Society of Japan, 2015, 88(7): 976-980. |
55 | Young Suk JO, Junyoung CHA, LEE Chan Hyun, et al. A viable membrane reactor option for sustainable hydrogen production from ammonia[J]. Journal of Power Sources, 2018, 400: 518-526. |
56 | PATI Subhasis, DEWANGAN Nikita, WANG Zhigang, et al. Nanoporous zeolite—A sheltered Pd-hollow fiber catalytic membrane reactor for propane dehydrogenation[J]. ACS Applied Nano Materials, 2020, 3(7): 6675-6683. |
57 | TSURU Toshinori, SHINTANI Hiroaki, YOSHIOKA Tomohisa, et al. A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: Preparation and application to the steam reforming of methane[J]. Applied Catalysis A: General, 2006, 302(1): 78-85. |
58 | MENG Lie, TSURU Toshinori. Hydrogen production from energy carriers by silica-based catalytic membrane reactors[J]. Catalysis Today, 2016, 268: 3-11. |
59 | KREUDER H, BOELTKEN T, CHOLEWA M, et al. Heat storage by the dehydrogenation of methylcyclohexane—Experimental studies for the design of a microstructured membrane reactor[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12082-12092. |
60 | KREUDER H, MÜLLER C, MEIER J, et al. Catalyst development for the dehydrogenation of MCH in a microstructured membrane reactor—For heat storage by a liquid organic reaction cycle[J]. Catalysis Today, 2015, 242: 211-220. |
61 | M D Irfan HATIM, M A Umi FAZARA, Muhammad SYARHABIL A, et al. Catalytic dehydrogenation of methylcyclohexane (MCH) to toluene in a palladium/alumina hollow fibre membrane reactor[J]. Procedia Engineering, 2013, 53: 71-80. |
62 | LI Gang, YADA Kazuya, KANEZASHI Masakoto, et al. Methylcyclohexane dehydrogenation in catalytic membrane reactors for efficient hydrogen production[J]. Industrial & Engineering Chemistry Research, 2013, 52(37): 13325-13332. |
63 | LI Gang, NIIMI Takuya, KANEZASHI Masakoto, et al. Equilibrium shift of methylcyclohexane dehydrogenation in a thermally stable organosilica membrane reactor for high-purity hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(35): 15302-15306. |
64 | CHOLEWA Martin, ZEHNER Bastian, KREUDER Heike, et al. Optimization of membrane area to catalyst mass in a microstructured membrane reactor for dehydrogenation of methylcyclohexane[J]. Chemical Engineering and Processing-Process Intensification, 2018, 125: 325-333. |
65 | MENG Lie, YU Xin, NIIMI Takuya, et al. Methylcyclohexane dehydrogenation for hydrogen production via a bimodal catalytic membrane reactor[J]. AIChE Journal, 2015, 61(5): 1628-1638. |
66 | AKAMATSU Kazuki, TAGO Toshiki, SESHIMO Masahiro, et al. Long-term stable H2 production from methylcyclohexane using a membrane reactor with a dimethoxydiphenylsilane-derived silica membrane prepared via chemical vapor deposition[J]. Industrial & Engineering Chemistry Research, 2015, 54(15): 3996-4000. |
67 | Ahsan ALI, ROHINI Ajith Krishnan, LEE Hee Joon. Dehydrogenation of perhydro-dibenzyltoluene for hydrogen production in a microchannel reactor[J]. International Journal of Hydrogen Energy, 2022, 47(48): 20905-20914. |
68 | WUNSCH Alexander, MOHR Marijan, PFEIFER Peter. Intensified LOHC-dehydrogenation using multi-stage microstructures and Pd-based membranes[J]. Membranes, 2018, 8(4): 112. |
69 | WUNSCH Alexander, BERG Tatjana, PFEIFER Peter. Hydrogen production from the LOHC perhydro-dibenzyl-toluene and purification using a 5µm PdAg-membrane in a coupled microstructured system[J]. Materials, 2020, 13(2): 277. |
70 | GEIBELBRECHT M, MRUSEK S, MÜLLER K, et al. Highly efficient, low-temperature hydrogen release from perhydro-benzyltoluene using reactive distillation[J]. Energy & Environmental Science, 2020, 13(9): 3119-3128. |
71 | JORSCHICK H, PREUSTER P, DÜRR S, et al. Hydrogen storage using a hot pressure swing reactor[J]. Energy & Environmental Science, 2017, 10(7): 1652-1659. |
72 | JORSCHICK H, DÜRR S, PREUSTER P, et al. Operational stability of a LOHC-based hot pressure swing reactor for hydrogen storage[J]. Energy Technology, 2019, 7(1): 146-152. |
73 | KUZMIN A O, Kh PRAVDINA M, YAVORSKY A I, et al. Vortex centrifugal bubbling reactor[J]. Chemical Engineering Journal, 2005, 107(1/2/3): 55-62. |
74 | Arturo GONZALEZ-QUIROGA, REYNIERS Pieter A, KULKARNI Shekhar R, et al. Design and cold flow testing of a Gas-Solid Vortex Reactor demonstration unit for biomass fast pyrolysis[J]. Chemical Engineering Journal, 2017, 329: 198-210. |
75 | VAN HOECKE Laurens, KUMMAMURU Nithin B, POURFALLAH Hesam, et al. Intensified swirling reactor for the dehydrogenation of LOHC[J]. International Journal of Hydrogen Energy, 2024, 51: 611-623. |
[1] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
[2] | 邹鹏翔, 张明阳, 朱文杰, 郭耀骏, 程婕, 赵妍舒, 袁迎春. 基于CFD的脂肪酸甲酯环氧化用液-液撞击流旋流反应器入口结构优化[J]. 化工进展, 2024, 43(S1): 166-173. |
[3] | 赵吉隆, 马英华, 黄国庆, 沈明芋, 陈宏霞. 基于正交试验的铯热管优化设计[J]. 化工进展, 2024, 43(S1): 94-105. |
[4] | 赵星程, 贾方旭, 刘晨雨, 韩宝红, 梅宁, 姚宏. 实际规模PN/A工艺载体挂膜性能与微生物群落[J]. 化工进展, 2024, 43(9): 5242-5249. |
[5] | 李一, 梁李斯, 张立兴, 乔江鱼, 崔忠宜, 陈进, 徐强, 赵晨. 次氯酸盐氧化剂同时脱硫脱硝一体化[J]. 化工进展, 2024, 43(9): 5282-5289. |
[6] | 赵梦磊, 赵军, 鲁鸿滨, 陶少辉, 赵文英, 项曙光. 基于吉布斯自由能最小化法煤气化反应器模型开发及应用[J]. 化工进展, 2024, 43(9): 4793-4799. |
[7] | 崔祎, 李孟原, 杨路, 李海东, 张奇琪, 常承林, 王彧斐. 采用扭曲片内插件的管壳式换热器自动设计新方法[J]. 化工进展, 2024, 43(9): 4824-4832. |
[8] | 张佳鑫, 张淼, 戴一阳, 董立春. 面向实际化工过程故障诊断的强化深度卷积神经网络模型构建与应用[J]. 化工进展, 2024, 43(9): 4833-4844. |
[9] | 郑庆雨, 金光远, 冯文凯, 朱正山, 周逸凡, 滕厚场, 李臻峰, 宋春芳, 宋飞虎, 李静. 一种混沌C型几何流动混合耦合电磁热特性数值分析[J]. 化工进展, 2024, 43(8): 4262-4272. |
[10] | 殷晨阳, 刘永峰, 陈睿哲, 张璐, 宋金瓯, 刘海峰. 基于量子化学计算的正己烷热解反应动力学模拟[J]. 化工进展, 2024, 43(8): 4273-4282. |
[11] | 蒋静智, 邵国伟, 崔海亭, 李洪涛, 杨奇. 三套管式加肋相变蓄热单元的强化传热特性[J]. 化工进展, 2024, 43(8): 4210-4221. |
[12] | 杨磻槟, 丁国栋, 陈家庆, 冯子夏, 郑佳媛. 射流强化非填料式溶气设备的工作性能[J]. 化工进展, 2024, 43(6): 2977-2985. |
[13] | 李海鹏, 吴桐, 王琪, 郜时旺, 王晓龙, 李旭, 高新华, 年佩, 魏逸彬. 透水NaA分子筛膜强化的CO2加氢高效制甲醇[J]. 化工进展, 2024, 43(5): 2834-2842. |
[14] | 武西宁, 张宁, 秦佳敏, 徐龙, 魏朝阳, 马晓迅. 低冷量下强化CO2吸收的甲醇基纳米流体性能[J]. 化工进展, 2024, 43(5): 2811-2822. |
[15] | 周秋明, 牛丛丛, 吕帅帅, 李红伟, 文富利, 徐润, 李明丰. 通过产物转化分离推动CO2加氢制甲醇过程的研究进展[J]. 化工进展, 2024, 43(5): 2776-2785. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |