1 |
ZHU Zhiqin, LEI Yangbo, QI Guanqiu, et al. A review of the application of deep learning in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2023, 206: 112346.
|
2 |
李国友, 张新魁, 才士文, 等. 基于改进KFDA与DE优化SOM的故障诊断模型及其化工过程诊断[J]. 化工进展, 2022, 41(4): 1793-1801.
|
|
LI Guoyou, ZHANG Xinkui, CAI Shiwen, et al. Study on fault diagnosis model and chemical process fault diagnosis based on improved KFDA and DE optimized SOM[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1793-1801.
|
3 |
宋冰, 郑城风, 侍洪波, 等. 基于VAE-OCCA的质量相关故障检测方法研究[J]. 化工学报, 2023, 74(4): 1630-1638.
|
|
SONG Bing, ZHENG Chengfeng, SHI Hongbo, et al. Research on quality-related fault detection method based on VAE-OCCA[J]. CIESC Journal, 2023, 74(4): 1630-1638.
|
4 |
姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764.
|
|
YAO Yuman, LUO Wenjia, DAI Yiyang. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764.
|
5 |
张焕, 张庆, 于纪言. 卷积神经网络中激活函数的性质分析与改进[J]. 计算机仿真, 2022, 39(4): 328-334.
|
|
ZHANG Huan, ZHANG Qing, YU Jiyan. Analysis and improvement of properties of activation functions in convolutional neural networks[J]. Computer Simulation, 2022, 39(4): 328-334.
|
6 |
谢星怡, 张正江, 闫正兵, 等. 基于信号特征提取和卷积神经网络的轴承故障诊断研究[J]. 计算机测量与控制, 2023, 31(10): 21-27.
|
|
XIE Xingyi, ZHANG Zhengjiang, YAN Zhengbing, et al. Research on bearing fault diagnosis based on signal feature extraction and convolutional neural network[J]. Computer Measurement & Control, 2023, 31(10): 21-27.
|
7 |
WEN Long, LI Xinyu, GAO Liang, et al. A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5990-5998.
|
8 |
JIANG Guoqian, WANG Jing, WANG Lijin, et al. An interpretable convolutional neural network with multi-wavelet kernel fusion for intelligent fault diagnosis[J]. Journal of Manufacturing Systems, 2023, 70: 18-30.
|
9 |
周中, 闫龙宾, 张俊杰, 等. 基于自注意力机制与卷积神经网络的隧道衬砌裂缝智能检测[J/OL]. 铁道学报, 2023, .
|
|
ZHOU Zhong, YAN Longbin, ZHANG Junjie, et al. Intelligent detection of tunnel lining cracks based on self-attention mechanism and convolutional neural network[J/OL]. Journal of the China Railway Society, 2023, .
|
10 |
尹梓诺, 马海龙, 胡涛. 基于联合注意力机制和一维卷积神经网络-双向长短期记忆网络模型的流量异常检测方法[J].电子与信息学报, 2023, 45(10): 3719-3728.
|
|
YIN Zinuo, MA Hailong, HU Tao. Traffic anomaly detection method based on joint attention mechanism and 1-dimensional convolutional neural network-bidirectional long short-term memory network model[J]. Journal of Electronics & Information technology, 2023, 45(10): 3719-3728.
|
11 |
VINOD Nair, HINTON Geoffrey E. Rectified linear units improve restricted boltzmann machines[C]//Proceedings of the 27th International Conference on International Conference on Machine Learning. Haifa, Israel: ACM, 2010: 807-814.
|
12 |
RAMACHANDRAN Prajit, ZOPH Barret, LE Quoc V. Searching for activation functions[EB/OL]. (2017-10-16). .
|
13 |
GOODFELLOW Ian J, David WARDE-FARLEY, MIRZA Mehdi, et al. Maxout networks[C]//International Conference on Machine Learning. Atlata, USA: PMLR, 2013: 1319-1327.
|
14 |
陈文华, 黄伟稀. 基于卷积神经网络的海上风电机组齿轮箱故障诊断[J]. 电子设计工程, 2022, 30(21): 6-10.
|
|
CHEN Wenhua, HUANG Weixi. Fault diagnosis of offshore wind turbine gearbox based on convolutional neural network[J]. Electronic Design Engineering, 2022, 30(21): 6-10.
|
15 |
DENG Lu, ZHANG Yangxue, DAI Yiyang, et al. Integrating feature optimization using a dynamic convolutional neural network for chemical process supervised fault classification[J]. Process Safety and Environmental Protection, 2021, 155: 473-485.
|
16 |
HENDRYCKS Dan, GIMPEL Kevin. Gaussian error linear units (GELUs)[EB/OL]. (2016-6-27). .
|
17 |
MATTEN L V D, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9 (11): 2579-2605.
|
18 |
ZHANG Zhanpeng, ZHAO Jinsong. A deep belief network based fault diagnosis model for complex chemical processes[J]. Computers & Chemical Engineering, 2017, 107: 395-407.
|
19 |
YAO Yuman, ZHANG Jiaxin, LUO Wenjia, et al. A hybrid intelligent fault diagnosis strategy for chemical processes based on penalty iterative optimization[J]. Processes, 2021, 9(8): 1266.
|