1 |
WAN Jintao, ZHAO Jianqing, ZHANG Xianwei, et al. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and perf ormances[J]. Progress in Polymer Science, 2020, 108: 101287.
|
2 |
GUO Wenwen, WANG Xin, HUANG Jiali, et al. Intrinsically anti-flammable and self-toughened phosphorylated cardanol-derived novolac epoxy thermosets[J]. Industrial Crops and Products, 2021, 166: 113496.
|
3 |
Min-Ji SIM, Sang-Ho CHA, LEE Jong-Chan. Enhancement of flame retardancy and physical property for poly(vinyl chloride) having renewable cardanol-based self-polymerizable phosphonate under heat treatment process[J]. Polymer Testing, 2021, 100: 107266.
|
4 |
KAVITHA Dhandapani, CHANDRASEKARAN Murugavel Salem, THENMOZHI Sivalingam. Flame retarding cardanol based novolac-epoxy/rice husk composites[J]. Materials Chemistry and Physics, 2021, 263: 124225.
|
5 |
RAJAK Dipen Kumar, PAGAR Durgesh D, KUMAR Ravinder, et al. Recent progress of reinforcement materials: A comprehensive overview of composite materials[J]. Journal of Materials Research and Technology, 2019, 8(6): 6354-6374.
|
6 |
李坚. 木材科学[M]. 3版. 北京: 科学出版社, 2014: 71-74.
|
|
LI Jian. Wood science[M]. 3rd ed. Beijing: Science Press, 2014: 71-74.
|
7 |
NATARAJAN M, MURUGAVEL S C. Cure kinetics of bio-based epoxy resin developed from epoxidized cardanol-formaldehyde and diglycidyl ether of bisphenol—A networks[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 387-396.
|
8 |
NATARAJAN M, MURUGAVEL S C. Synthesis, spectral and thermal degradation kinetics of novolac resins derived from cardanol[J]. High Performance Polymers, 2013, 25(6): 685-696.
|
9 |
王飞镝, 李庭忠, 张一聪. 腰果酚基酚醛环氧树脂的制备与性能研究[J]. 现代涂料与涂装, 2013, 16(9): 4-9.
|
|
WANG Feidi, LI Tingzhong, ZHANG Yicong. Preparation and properties of cardanol-based epoxidized novolac resin[J]. Modern Paint & Finishing, 2013, 16(9): 4-9.
|
10 |
SCHOONMAKER Amanda L, HACKE Uwe G, LANDHÄUSSER Simon M, et al. Hydraulic acclimation to shading in boreal conifers of varying shade tolerance[J]. Plant, Cell & Environment, 2010, 33(3): 382-393.
|
11 |
XU Tianyu, ZHANG Lixiang, LI Ze. Computational fluid dynamics model and flow resistance characteristics of Jatropha curcas L xylem vessel[J]. Scientific Reports, 2020, 10(1): 14728.
|
12 |
曲文. 基于木质部微结构渗流特性分析的典型针叶材浸渍性能研究[D]. 哈尔滨: 东北林业大学, 2022.
|
|
QU Wen. Research on impregnation performance of typical coniferous wood based on analysis of seepage characteristics of xylem microstructure[D]. Harbin: Northeast Forestry University, 2022.
|
13 |
LOSSO Adriano, ANFODILLO Tommaso, GANTHALER Andrea, et al. Robustness of xylem properties in conifers: Analyses of tracheid and pit dimensions along elevational transects[J]. Tree Physiology, 2018, 38(2): 212-222.
|
14 |
李志斌. PET的化学降解及其在木材增强改性中的应用研究[D]. 昆明: 昆明理工大学, 2022.
|
|
LI Zhibin. Chemical degradation of PET and its application in wood reinforcement modification[D]. Kunming: Kunming University of Science and Technology, 2022.
|
15 |
AZIZI Kolsoom, KESHAVARZ Moraveji Mostafa, ABEDINI Najafabadi Hamed. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA[J]. Bioresource Technology, 2017, 243: 481-491.
|
16 |
倪卓, 王英浩, 罗汉伟, 等. 不饱和聚酯树脂的热分解动力学研究[J]. 化学与粘合, 2021, 43(1): 1-4.
|
|
NI Zhuo, WANG Yinghao, LUO Hanwei, et al. Study on the thermal decomposition kinetics of unsaturated polyester resin[J]. Chemistry and Adhesion, 2021, 43(1): 1-4.
|
17 |
KONG Lizhuo, GUAN Hao, WANG Xiaoqing. In situ polymerization of furfuryl alcohol with ammonium dihydrogen phosphate in poplar wood for improved dimensional stability and flame retardancy[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3349-3357.
|
18 |
LU Mengting, HE Wen, LI Ze, et al. Effect of lignin content on properties of flexible transparent poplar veneer fabricated by impregnation with epoxy resin[J]. Polymers, 2020, 12(11): 2602.
|
19 |
WANG Dongyue, LING Qiuhui, NIE Yujing, et al. In-situ cross-linking of waterborne epoxy resin inside wood for enhancing its dimensional stability, thermal stability, and decay resistance[J]. ACS Applied Polymer Materials, 2021, 3(12): 6265-6273.
|
20 |
NGUILA Inari G, PÉTRISSANS M, DUMARCAY S, et al. Limitation of XPS for analysis of wood species containing high amounts of lipophilic extractives[J]. Wood Science and Technology, 2011, 45(2): 369-382.
|
21 |
HU Yucheng, HU Fuqiang, GAN Meixue, et al. A rapid, green method for the preparation of cellulosic self-reinforcing composites from wood and bamboo pulp[J]. Industrial Crops and Products, 2021, 169: 113658.
|
22 |
POPESCU Carmen-Mihaela, TIBIRNA Carmen-Mihaela, VASILE Cornelia. XPS characterization of naturally aged wood[J]. Applied Surface Science, 2009, 256(5): 1355-1360.
|
23 |
Jorge BAÑULS-CISCAR, PRATELLI Daniele, ABEL Marie-Laure, et al. Surface characterisation of pine wood by XPS[J]. Surface and Interface Analysis, 2016, 48(7): 589-592.
|
24 |
李志斌, 应俏, 袁新兵, 等. 环氧大豆油丙烯酸酯浸渍改性速生木材的性能及改性机理[J]. 高分子材料科学与工程, 2022, 38(11): 49-57.
|
|
LI Zhibin, YING Qiao, YUAN Xinbing, et al. Performance and mechanism of acrylated epoxidized soybean oil impregnation modified fast-growing wood[J]. Polymer Materials Science & Engineering, 2022, 38(11): 49-57.
|