化工进展 ›› 2024, Vol. 43 ›› Issue (1): 376-389.DOI: 10.16085/j.issn.1000-6613.2023-0228
• 能源加工与技术 • 上一篇
曾悦(), 王月(), 张学瑞, 宋玺文, 夏博文, 陈梓颀
收稿日期:
2023-02-21
修回日期:
2023-10-04
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
王月
作者简介:
曾悦(1995—),女,博士,工程师,研究方向为氢提纯和绿氨合成技术。E-mail:zengyue@petrochina.com.cn。
基金资助:
ZENG Yue(), WANG Yue(), ZHANG Xuerui, SONG Xiwen, XIA Bowen, CHEN Ziqi
Received:
2023-02-21
Revised:
2023-10-04
Online:
2024-01-20
Published:
2024-02-05
Contact:
WANG Yue
摘要:
可再生能源和氢能产业快速发展,氨作为储氢介质,因其能发挥长时储氢和长距离运氢的作用,受到广泛关注。化石燃料制氢合成氨工艺成熟,但二氧化碳排放强度大。绿氨以可再生能源电解制氢作为氢源,具有减少合成氨产业碳排放、消纳风光等可再生能源、充当储氢载体易于储运等优势,在碳达峰碳中和的目标下,开发绿氨合成工艺具有重要意义。本文总结了工业Haber-Bosch法合成氨、电化学、光催化、等离子体和化学链合成氨取得的研究进展及面临的挑战,阐述了可再生能源电解制氢合成氨工艺的技术路线和发展现状,对比了煤制灰氨和可再生能源制绿氨工艺的技术经济可行性,分析了电价、电解制氢能耗等因素对电解制氢合成氨成本的影响,论述了分别以氨为载体储氢和储存液氢的成本构成,研究了分别以氨为载体运氢和运输气氢的成本,提出了对绿氢合成绿氨、以绿氨为载体储运氢产业发展的思考。
中图分类号:
曾悦, 王月, 张学瑞, 宋玺文, 夏博文, 陈梓颀. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389.
ZENG Yue, WANG Yue, ZHANG Xuerui, SONG Xiwen, XIA Bowen, CHEN Ziqi. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389.
开发商 | 装置规模 | 建设地 | 总投资/亿元 | 催化剂 |
---|---|---|---|---|
Skovgaard Invest, Vestas, Haldor Topsoe | 10MW风电和光伏,5000吨/年绿氨 | 丹麦 | 0.77 | Fe基催化剂 |
阿布扎比国家能源公司 | 2GW光伏,4万吨/年绿氢,20万吨/年绿氨 | 沙特 | 70 | Fe基催化剂 |
林德,HiveHydrogen | 1GW光伏,1.4GW风电,156MW储能,80~90万吨/年绿氨 | 南非 | 322 | Fe基催化剂 |
洲际能源,CWP Global | 50GW风电和光伏,350万吨/年绿氢,2000万吨/年绿氨 | 澳大利亚 | 700 | Fe基催化剂 |
乌拉特后旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
达茂旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
国家能源集团国华投资 | 300MW光伏,800MW风电,30万吨/年绿氨 | 中国内蒙古 | 23 | Fe基催化剂 |
国家电投集团 | 100MW光伏,700MW风电,18万吨/年绿氨 | 中国吉林 | 63 | Fe基催化剂 |
表1 国内外在建、拟建绿氨重点项目
开发商 | 装置规模 | 建设地 | 总投资/亿元 | 催化剂 |
---|---|---|---|---|
Skovgaard Invest, Vestas, Haldor Topsoe | 10MW风电和光伏,5000吨/年绿氨 | 丹麦 | 0.77 | Fe基催化剂 |
阿布扎比国家能源公司 | 2GW光伏,4万吨/年绿氢,20万吨/年绿氨 | 沙特 | 70 | Fe基催化剂 |
林德,HiveHydrogen | 1GW光伏,1.4GW风电,156MW储能,80~90万吨/年绿氨 | 南非 | 322 | Fe基催化剂 |
洲际能源,CWP Global | 50GW风电和光伏,350万吨/年绿氢,2000万吨/年绿氨 | 澳大利亚 | 700 | Fe基催化剂 |
乌拉特后旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
达茂旗绿氨技术 | 30万吨/年绿氨 | 中国内蒙古 | 5 | Fe基催化剂 |
国家能源集团国华投资 | 300MW光伏,800MW风电,30万吨/年绿氨 | 中国内蒙古 | 23 | Fe基催化剂 |
国家电投集团 | 100MW光伏,700MW风电,18万吨/年绿氨 | 中国吉林 | 63 | Fe基催化剂 |
煤价/CNY·t-1 | 吨氨成本/CNY·t-1 |
---|---|
300 | 1150 |
400 | 1300 |
500 | 1450 |
600 | 1600 |
700 | 1750 |
800 | 1900 |
900 | 2050 |
1000 | 2200 |
1100 | 2350 |
1200 | 2500 |
1300 | 2650 |
1400 | 2800 |
1500 | 2950 |
表2 不同煤价情况下的吨氨成本
煤价/CNY·t-1 | 吨氨成本/CNY·t-1 |
---|---|
300 | 1150 |
400 | 1300 |
500 | 1450 |
600 | 1600 |
700 | 1750 |
800 | 1900 |
900 | 2050 |
1000 | 2200 |
1100 | 2350 |
1200 | 2500 |
1300 | 2650 |
1400 | 2800 |
1500 | 2950 |
储存过程 | 氨/CNY·kg-1 | 液氢/CNY·kg-1 |
---|---|---|
合成氨 | 4.0 | — |
液化 | — | 10.5 |
储存(15天) | 0.4 | 13 |
储存(182天) | 3.6 | 97 |
脱氢/再气化 | 8.5 | 2.7 |
合计 | 12.9(储存15天) | 26.2(储存15天) |
16.1(储存182天) | 110.2(储存182天) |
表3 氨与液氢储存成本比较
储存过程 | 氨/CNY·kg-1 | 液氢/CNY·kg-1 |
---|---|---|
合成氨 | 4.0 | — |
液化 | — | 10.5 |
储存(15天) | 0.4 | 13 |
储存(182天) | 3.6 | 97 |
脱氢/再气化 | 8.5 | 2.7 |
合计 | 12.9(储存15天) | 26.2(储存15天) |
16.1(储存182天) | 110.2(储存182天) |
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.74~30.3 | 37.1~137.1 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 1.14~5.7 | 25~125 |
脱氢 | 8.5 | — |
表4 氨与气氢现阶段运输成本比较(铁路和公路运输)
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.74~30.3 | 37.1~137.1 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 1.14~5.7 | 25~125 |
脱氢 | 8.5 | — |
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.19~27.53 | 16~31.6 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 0.59~2.93 | 3.9~19.5 |
脱氢 | 8.5 | — |
表5 氨与气氢未来运输成本比较(管道运输)
储存过程 | 氨/CNY·kg-1 | 气氢/CNY·kg-1 |
---|---|---|
合计 | 25.19~27.53 | 16~31.6 |
制取 | 16.1 | 12.1 |
运输(1000~5000km) | 0.59~2.93 | 3.9~19.5 |
脱氢 | 8.5 | — |
1 | 习近平在第七十五届联合国大会一般性辩论上发表重要讲话[EB/OL]. (2020-09-22) [2023-02-15]. . |
President Xi Jinping addresses the general debate of the 75th session of the United Nations General Assembly[EB/OL]. (2020-09-22) [2023-02-15]. . | |
2 | 国家发展改革委员会, 国家能源局. 氢能产业发展中长期规划(2021—2035年)[EB/OL]. (2022-03-23) [2023-02-15]. . |
National Development and Reform Commission, National Energy Administration. Medium- and long-term plan for the development of hydrogen energy industry (2021—2035)[EB/OL]. (2022-03-23) [2023-02-15]. . | |
3 | 刘化章. 合成氨工业节能减排的分析[J]. 化工进展, 2011, 30(6): 1147-1157. |
LIU Huazhang. Analysis of energy saving in ammonia synthesis industry[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1147-1157. | |
4 | 夏鑫, 蔺建民, 李妍, 等. 氨混合燃料体系的性能研究现状[J]. 化工进展, 2022, 41(5): 2332-2339. |
XIA Xin, LIN Jianmin, LI Yan, et al. Research progress on performance and application of ammonia fuel on engines[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2332-2339. | |
5 | CHAI Wai Siong, BAO Yulei, JIN Pengfei, et al. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels[J]. Renewable and Sustainable Energy Reviews, 2021, 147: 111254. |
6 | WANG Lu, XIA Meikun, WANG Hong, et al. Greening ammonia toward the solar ammonia refinery[J]. Joule, 2018, 2(6): 1055-1074. |
7 | SMIL V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production[M]. Cambridge, Mass: MIT Press, 2001. |
8 | ERISMAN J W, SUTTON M A, GALLOWAY J, et al. How a century of ammonia synthesis changed the world[J]. Nature Geoscience, 2008, 1(10): 636-639. |
9 | 程明睿, 高宏. 绿氢已成为未来维护能源安全的重要方向[J]. 科技中国, 2022(10): 60-65. |
CHENG Mingrui, GAO Hong. Green hydrogen has become an important direction to maintain energy security in the future[J]. Scitech in China, 2022(10): 60-65. | |
10 | JIANG Lilong, FU Xianzhi. An ammonia-hydrogen energy roadmap for carbon neutrality: Opportunity and challenges in China[J]. Engineering, 2021, 7(12): 1688-1691. |
11 | 刘化章. 合成氨催化剂研究的新进展[J]. 催化学报, 2001, 22(3): 304-316. |
LIU Huazhang. Recent advances in research of catalysts for ammonia synthesis[J]. Chinese Journal of Catalysis, 2001, 22(3): 304-316. | |
12 | 孙珍珍, 刘化章, 叶攀, 等. Fe1- x O基氨合成催化剂助催化剂的优选[J]. 化工进展, 2022, 41(4): 1886-1893. |
SUN Zhenzhen, LIU Huazhang, YE Pan, et al. Optimization of promoters for Fe1- x O-based ammonia synthesis catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1886-1893. | |
13 | 杨海深. 合成氨催化剂研究进展[J]. 化工设计通讯, 2019, 45(3): 6-7. |
YANG Haishen. Research progress of catalysts for ammonia synthesis[J]. Chemical Engineering Design Communications, 2019, 45(3): 6-7. | |
14 | 郑晓玲, 魏可镁. 第二代氨合成催化体系——钌系氨合成催化剂及其工业应用[J]. 化学进展, 2001, 13(6): 472-480. |
ZHENG Xiaoling, WEI Kemei. The second generation catalysis system for ammonia synthesis—Ruthenium-based ammonia synthesis catalyst and its industrial application[J]. Progress in Chemistry, 2001, 13(6): 472-480. | |
15 | 倪军, 刘本耀, 朱永龙, 等. 双结构助剂对Ru/AC氨合成催化剂稳定性的影响[J]. 分子催化, 2013, 27(4): 371-376. |
NI Jun, LIU Benyao, ZHU Yonglong, et al. Effects of dual structure promoters on Ru/AC catalyst for ammonia synthesis[J]. Journal of Molecular Catalysis, 2013, 27(4): 371-376. | |
16 | LIU Anmin, YANG Yanan, REN Xuefeng, et al. Current progress of electrocatalysts for ammonia synthesis through electrochemical nitrogen reduction under ambient conditions[J]. ChemSusChem, 2020, 13(15): 3766-3788. |
17 | JIA H P, QUADRELLI E A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen[J]. Chemical Society Reviews, 2014, 43(2): 547-564. |
18 | ZOU Haiyuan, RONG Weifeng, WEI Shuting, et al. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(47): 29462-29468. |
19 | ZHOU F L, AZOFRA L M, ALI M, et al. Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids[J]. Energy & Environmental Science, 2017, 10(12): 2516-2520. |
20 | DU H L, CHATTI M, HODGETTS R Y, et al. Electroreduction of nitrogen with almost 100% current-to-ammonia efficiency[J]. Nature, 2022, 609(7928): 722-727. |
21 | LI K, ANDERSEN S Z, STATT M J, et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen[J]. Science, 2021, 374(6575): 1593-1597. |
22 | FU X B, PEDERSEN J B, ZHOU Y Y, et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation[J]. Science, 2023, 379(6633): 707-712. |
23 | SHEN Huidong, CHOI Changhyeok, MASA Justus, et al. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design[J]. Chem, 2021, 7(7): 1708-1754. |
24 | LIANG Zhao, LIU Chao, CHEN Mingwei, et al. Theoretical screening of di-metal atom (M=Fe, Co, Ni, Cu, Zn) electrocatalysts for ammonia synthesis[J]. International Journal of Hydrogen Energy, 2020, 45(56): 31881-31891. |
25 | QIU Weibin, YANG Na, LUO Dan, et al. Precise synthesis of Fe-N2 with N vacancies coordination for boosting electrochemical artificial N2 fixation[J]. Applied Catalysis B: Environmental, 2021, 293: 120216. |
26 | VAN DER HAM C J M, KOPER M T M, HETTERSCHEID D G H. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
27 | GOMEZ J R, GARZON F. Preliminary economics for green ammonia synthesis via lithium mediated pathway[J]. International Journal of Energy Research, 2021, 45(9): 13461-13470. |
28 | CHENG Ming, XIAO Chong, XIE Yi. Photocatalytic nitrogen fixation: The role of defects in photocatalysts[J]. Journal of Materials Chemistry A, 2019, 7(34): 19616-19633. |
29 | HU Shaozheng, CHEN Xin, LI Qiang, et al. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis[J]. Applied Catalysis B: Environmental, 2017, 201: 58-69. |
30 | LI Xiaohong, CHEN Weilin, TAN Huaqiao, et al. Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37927-37938. |
31 | ZHAO Yunxuan, ZHAO Yufei, SHI Run, et al. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700nm[J]. Advanced Materials, 2019, 31(16): 1806482. |
32 | MOU Hongyu, WANG Jinfang, YU Dongkun, et al. Fabricating amorphous g-C3N4/ZrO2 photocatalysts by one-step pyrolysis for solar-driven ambient ammonia synthesis[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44360-44365. |
33 | ZHANG Shuai, ZHAO Yunxuan, SHI Run, et al. Sub-3nm ultrafine Cu2O for visible light driven nitrogen fixation[J]. Angewandte Chemie International Edition, 2021, 60(5): 2554-2560. |
34 | XIAO Cailin, WANG Haipeng, ZHANG Ling, et al. Enhanced photocatalytic nitrogen fixation on MoO2/BiOCl composite[J]. ChemCatChem, 2019, 11(24): 6467-6472. |
35 | MAO Chengliang, LI Hao, GU Honggang, et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light[J]. Chem, 2019, 5(10): 2702-2717. |
36 | BIAN Xuan'ang, ZHAO Yunxuan, WATERHOUSE G I N, et al. Quantifying the contribution of hot electrons in photothermal catalysis: A case study of ammonia synthesis over carbon-supported Ru catalyst[J]. Angewandte Chemie, 2023, 135(25): e202304452. |
37 | ANASTASOPOULOU A, KEIJZER R, PATIL B, et al. Environmental impact assessment of plasma-assisted and conventional ammonia synthesis routes[J]. Journal of Industrial Ecology, 2020, 24(5): 1171-1185. |
38 | GORBANEV Y, VERVLOESSEM E, NIKIFOROV A, et al. Nitrogen fixation with water vapor by nonequilibrium plasma: Toward sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996-3004. |
39 | GUO Cheng'an, TANG Fei, CHEN Jin, et al. Development of dielectric-barrier-discharge ionization[J]. Analytical and Bioanalytical Chemistry, 2015, 407: 2345-2364. |
40 | GÓMEZ-RAMÍREZ A, COTRINO J, LAMBERT R, et al. Efficient synthesis of ammonia from N2 and H2 alone in a ferroelectric packed-bed DBD reactor[J]. Plasma Sources Science and Technology, 2015, 24(6): 065011. |
41 | BAI Mindong, ZHANG Zhitao, BAI Mindi, et al. Synthesis of ammonia using CH4/N2 plasmas based on micro-gap discharge under environmentally friendly condition[J]. Plasma Chemistry and Plasma Processing, 2008, 28(4): 405-414. |
42 | XIE Deyuan, SUN Ye, ZHU Tianle, et al. Ammonia synthesis and by-product formation from H2O, H2 and N2 by dielectric barrier discharge combined with an Ru/Al2O3 catalyst[J]. RSC Advances, 2016, 6(107): 105338-105346. |
43 | WINTER L R, ASHFORD B, HONG Junmi, et al. Identifying surface reaction intermediates in plasma catalytic ammonia synthesis[J]. ACS Catalysis, 2020, 10(24): 14763-14774. |
44 | ZHAO Hao, SONG Guohui, CHEN Zhe, et al. In situ identification of NNH and N2H2 by using molecular-beam mass spectrometry in plasma-assisted catalysis for NH3 synthesis[J]. ACS Energy Letters, 2022, 7(1): 53-58. |
45 | LI Laiquan, TANG Cheng, CUI Xiaoyang, et al. Efficient nitrogen fixation to ammonia through integration of plasma oxidation with electrocatalytic reduction[J]. Angewandte Chemie, 2021, 133(25): 14250-14256. |
46 | REN Yongwen, YU Chang, WANG Linshan, et al. Microscopic-level insights into the mechanism of enhanced NH3 synthesis in plasma-enabled cascade N2 oxidation-electroreduction system[J]. Journal of the American Chemical Society, 2022, 144(23): 10193-10200. |
47 | GÁLVEZ M E, HALMANN M, STEINFELD A. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 1. Thermodynamic, environmental, and economic analyses[J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2042-2046. |
48 | MICHALSKY R, PFROMM P H. An ionicity rationale to design solid phase metal nitride reactants for solar ammonia production[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23243-23251. |
49 | MICHALSKY R, AVRAM A M, PETERSON B A, et al. Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage[J]. Chemical Science, 2015, 6(7): 3965-3974. |
50 | YE Tian-Nan, PARK Sang-Won, LU Yangfan, et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst[J]. Nature, 2020, 583(7816): 391-395. |
51 | GAO Wenbo, GUO Jianping, WANG Peikun, et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers[J]. Nature Energy, 2018, 3(12): 1067-1075. |
52 | GAO Wenbo, WANG Peikun, GUO Jianping, et al. Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt[J]. ACS Catalysis, 2017, 7(5): 3654-3661. |
53 | FENG Sheng, GAO Wenbo, WANG Qianru, et al. A multi-functional composite nitrogen carrier for ammonia production via a chemical looping route[J]. Journal of Materials Chemistry A, 2021, 9(2): 1039-1047. |
54 | 国家发展改革委员会, 国家能源局. “十四五”新型储能发展实施方案[EB/OL]. (2022-01-29) [2023-02-15]. . |
National Development and Reform Commission, National Energy Administration. Implementation Plan for the Development of New Energy Storage in the 14th Five-Year Plan[EB/OL]. (2022-01-29) [2023-02-15]. . | |
55 | 国家发展改革委员会, 国家能源局. “十四五”现代能源体系规划[EB/OL]. (2022-01-29) [2023-02-15]. . |
National Development and Reform Commission, National Energy Administration. The 14th Five-Year Plan for Modern Energy System[EB/OL]. (2022-01-29) [2023-02-15]. . | |
56 | 徐玉华. 对型煤制作中两个观念的看法[J]. 化工设计通讯, 2013, 39(1): 30-32. |
XU Yuhua. View of two briquette production concepts[J]. Chemical Engineering Design Communications, 2013, 39(1): 30-32. | |
57 | 陕煤集团. 渭化公司: 虎年新春各项工作齐头并进[EB/OL]. (2022-02-21) [2023-09-11]. . |
Shaanxi Coal and Chemical Industry Group Co., Ltd.. Shaanxi Weihe Coal Chemical Corporation Group Ltd.: All the work goes together in the year of Tiger Spring Festival[EB/OL]. (2022-02-21) [2023-09-11]. . | |
58 | 潞安阳煤化工集团.储粮备衣战寒冬③平原化工: 多措并举精准发力 画好“战寒冬”同心圆[EB/OL]. (2022-10-20) [2023-09-11]. . |
Lu'an Chemical Group. Grain storage and clothing against cold winter @ Pingyuan Chemical Industry: Take multiple measures to fight the cold winter precisely[EB/OL]. (2022-10-20) [2023-09-11]. . | |
59 | 杨阳, 张胜中, 王红涛. 碱性电解水制氢关键材料研究进展[J]. 现代化工, 2021, 41(5): 78-82, 87. |
YANG Yang, ZHANG Shengzhong, WANG Hongtao. Research progress on key materials for alkaline water electrolysis to hydrogen[J]. Modern Chemical Industry, 2021, 41(5): 78-82, 87. | |
60 | 中国产学研合作促进会. 碱性水电解制氢系统“领跑者行动”性能评价导则: T/CAB 0166—2022 [S]. 北京: 全国团体标准信息平台, 2022. |
China Industry-University-Research Institute Collaboration Association. Hydrogen top runner program evaluation guidelines of alkaline water electrolysis system for hydrogen production: T/CAB 0166—2022 [S]. Beijing: National group standard information platform, 2022. | |
61 | 宁夏回族自治区发展和改革委员会. 自治区发展改革委关于优化峰谷分时电价机制的通知[EB/OL]. (2023-01-04) [2023-02-15]. . |
Development and Reform Commission of Ningxia Hui Autonomous Region. Notice of the Development and Reform Commission of the Autonomous Region on optimizing the peak-valley time-of-use electricity price mechanism[EB/OL]. (2023-01-04) [2023-02-15]. . | |
62 | 李育磊, 刘玮, 董斌琦, 等. 双碳目标下中国绿氢合成氨发展基础与路线[J]. 储能科学与技术, 2022, 11(9): 2891-2899. |
LI Yulei, LIU Wei, DONG Binqi, et al. Green hydrogen ammonia synthesis in China under double carbon target: Research on development basis and route [J]. Energy Storage Science and Technology, 2022, 11(9): 2891-2899. | |
63 | 谢易奇. 绿氢应用于甲醇和合成氨工业的情景和路径[C]// 2021势银氢能与燃料电池产业年会, 2021: 1-24. |
XIE Yiqi. Scenario and path of green hydrogen application in methanol and synthetic ammonia industry[C]// 2021 TrendBank Hydrogen Energy & Fuel Cell Annual Conference, 2021: 1-24. | |
64 | 李建华, 黄二梅. 双碳背景下合成氨的发展研究[J/OL]. 现代化工, 2023,43(9):16-19, 23. |
LI Jianhua, HUANG Ermei. Study on the development of synthetic ammonia at the background of carbon-peaking and carbon-neutralization (Double Carbon) Goals [J/OL]. Modern Chemical Industry, 2023, 43(9):16-19, 23. | |
65 | BARTELS J R. A feasibility study of implementing an ammonia economy[D]. Ames: Iowa State University, 2008. |
66 | 吴全, 沈珏新, 余磊, 等. “双碳”背景下氢-氨储运技术与经济性浅析[J]. 油气与新能源, 2022, 34(5): 27-33, 39. |
WU Quan, SHEN Juexin, YU Lei, et al. Analysis on the hydrogen-ammonia storage and transportation technology and economical efficiency against the "dual-carbon" background[J]. Petroleum and New Energy, 2022, 34(5): 27-33, 39. | |
67 | VALERA-MEDINA A, BANARES-ALCANTARA R. Techno-economic challenges of green ammonia as an energy vector[M]. UK: Academic Press, 2020. |
68 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. |
[1] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[2] | 张巍, 王锐, 缪平, 田戈. 全球可再生能源电转甲烷的应用[J]. 化工进展, 2023, 42(3): 1257-1269. |
[3] | 孙晖, 孟祥海, 魏景海, 周红军, 徐春明. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
[4] | 李卫东, 李逸龙, 滕霖, 尹鹏博, 黄鑫, 李加庆, 罗宇, 江莉龙. “双碳”目标下的氨能技术与经济性研究进展[J]. 化工进展, 2023, 42(12): 6226-6238. |
[5] | 于锋. 关于“氮一化学”的思考与展望[J]. 化工进展, 2023, 42(12): 6136-6140. |
[6] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[7] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[8] | 王红霞, 徐婉怡, 张早校. 可再生电力电解制绿色氢能的发展现状与建议[J]. 化工进展, 2022, 41(S1): 118-131. |
[9] | 胡兵, 徐立军, 何山, 苏昕, 汪继伟. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
[10] | 马有福, 王梓文, 吕俊复. 热风再循环机炉耦合高效发电系统变负荷性能仿真及优化[J]. 化工进展, 2022, 41(5): 2340-2347. |
[11] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[12] | 梁金强, 刘丹竹, 徐庶亮, 叶茂, 刘中民. “双碳”目标下能源安全定量评价方法[J]. 化工进展, 2022, 41(3): 1622-1633. |
[13] | 苗青青, 石春艳, 张香平. 碳中和目标下的光伏发电技术[J]. 化工进展, 2022, 41(3): 1125-1131. |
[14] | 白旭东, 王建勋. 330MW锅炉配风方式对NOx排放浓度和锅炉经济性的影响分析[J]. 化工进展, 2021, 40(S2): 25-29. |
[15] | 王建勋. 火电机组余热梯级供热技术的综合分析[J]. 化工进展, 2021, 40(S2): 149-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |