化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5801-5810.DOI: 10.16085/j.issn.1000-6613.2022-2379
• 材料科学与技术 • 上一篇
李致达1(), 石瑶1, 张凤姣1, 娄伟2, 王琳玲1, 盛安旭1, 吴晓晖1, 昝飞翔1, 陈静1()
收稿日期:
2022-12-29
修回日期:
2023-02-16
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
陈静
作者简介:
李致达(1997—),男,硕士研究生,研究方向为土壤修复材料。E-mail:lizhida@hust.edu.cn。
基金资助:
LI Zhida1(), SHI Yao1, ZHANG Fengjiao1, LOU Wei2, WANG Linling1, SHENG Anxu1, WU Xiaohui1, ZAN Feixiang1, CHEN Jing1()
Received:
2022-12-29
Revised:
2023-02-16
Online:
2023-11-20
Published:
2023-12-15
Contact:
CHEN Jing
摘要:
层状双氢氧化物(layered double hydroxides,LDHs)具有优良的吸附与催化性能。作为一种近年来被环境领域密切关注的新型功能材料,LDHs被广泛应用于去除环境中的各种污染物。本文基于对过去十几年的文献与报道进行了聚类数据分析,介绍了LDHs的制备与改性方法,总结了LDHs在环境领域中的应用。基于LDHs优异的性能,针对污染场景对LDHs进行功能改性,能够实现对特定污染物的去除,解决相应的环境问题。本文详细阐述了LDHs对染料废水、畜禽养殖和制药废水中的染料、抗生素等有机污染物的吸附和降解机制,并探讨了LDHs对采选冶废水中重金属的去除机制以及富营养化水体中氮、磷的治理,展望了LDHs在农田修复和二氧化碳捕集与资源化领域中的应用。本文为LDHs在环境领域中的应用作出较全面的总结,同时指出了LDHs研究目前存在的局限与挑战,为未来研究提供方向与思路。
中图分类号:
李致达, 石瑶, 张凤姣, 娄伟, 王琳玲, 盛安旭, 吴晓晖, 昝飞翔, 陈静. 层状双氢氧化物在环境修复领域中的研究进展[J]. 化工进展, 2023, 42(11): 5801-5810.
LI Zhida, SHI Yao, ZHANG Fengjiao, LOU Wei, WANG Linling, SHENG Anxu, WU Xiaohui, ZAN Feixiang, CHEN Jing. Research progress on the application of layered double hydroxides in environmental remediation[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5801-5810.
46 | 武利园, 王鑫, 郭朋朋, 等. 层状双金属氢氧化物活化过硫酸盐降解有机污染物研究进展[J]. 复合材料学报, 2022, 39(5): 2034-2048. |
WU Liyuan, WANG Xin, GUO Pengpeng, et al. Layered double hydroxides mediated persulfate activation for organic pollutants degradation: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2034-2048. | |
47 | GE Lin, SHAO Binbin, LIANG Qinghua, et al. Layered double hydroxide based materials applied in persulfate based advanced oxidation processes: Property, mechanism, application and perspectives[J]. Journal of Hazardous Materials, 2022, 424: 127612. |
48 | MI Xiaohui, MA Rui, PU Xunchi, et al. FeNi-layered double hydroxide (LDH)@biochar composite for, activation of peroxymonosulfate (PMS) towards enhanced degradation of doxycycline (DOX): Characterizations of the catalysts, catalytic performances, degradation pathways and mechanisms[J]. Journal of Cleaner Production, 2022, 378: 134514. |
49 | YUE Dongting, YAN Xuan, GUO Chao, et al. NiFe layered double hydroxide (LDH) nanosheet catalysts with Fe as electron transfer mediator for enhanced persulfate activation[J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 968-973. |
50 | KARIM Ansaf V, HASSANI Aydin, EGHBALI Paria, et al. Nanostructured modified layered double hydroxides (LDHs)-based catalysts: A review on synthesis, characterization, and applications in water remediation by advanced oxidation processes[J]. Current Opinion in Solid State and Materials Science, 2022, 26(1): 100965. |
51 | HSU L C, WANG S L, TZOU Y M, et al. The removal and recovery of Cr(Ⅵ) by Li/Al layered double hydroxide (LDH)[J]. Journal of Hazardous Materials, 2007, 142(1/2): 242-249. |
52 | ZHENG Yingqiu, CHENG Bei, YOU Wei, et al. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(Ⅵ) ions[J]. Journal of Hazardous Materials, 2019, 369: 214-225. |
53 | XU Yunfeng, ZHANG Jia, LIANG Ying, et al. Synchronous cyanide purification with metals removal in the co-treatment of Zn-CN and Ni electroplating wastewaters via the Ni2+-assisted precipitation of LDH[J]. Separation and Purification Technology, 2015, 145: 92-97. |
54 | BEHBAHANI Elham Sadati, DASHTIAN Kheibar, GHAEDI Mehrorang. Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb(Ⅱ), Cd(Ⅱ), and Cu(Ⅱ) heavy metal ions[J]. Journal of Hazardous Materials, 2021, 410: 124560. |
55 | TANG Zhen, QIU Zedong, LU Shuang, et al. Functionalized layered double hydroxide applied to heavy metal ions absorption: A review[J]. Nanotechnology Reviews, 2020, 9(1): 800-819. |
56 | QU Ping, LI Yuncong, HUANG Hongying, et al. Foamed urea-formaldehyde microspheres for removal of heavy metals from aqueous solutions[J]. Chemosphere, 2020, 241: 125004. |
57 | RAHMAN M T, KAMEDA T, MIURA T, et al. Facile method for treating Zn, Cd, and Pb in mining wastewater by the formation of Mg-Al layered double hydroxide[J]. International Journal of Environmental Science and Technology, 2020, 17(5): 3023-3032. |
58 | PARK Man, CHOI Choong Lyeal, SEO Young Jin, et al. Reactions of Cu2+ and Pb2+ with Mg/Al layered double hydroxide[J]. Applied Clay Science, 2007, 37(1/2): 143-148. |
59 | KONG Xianggui, GE Ruixiang, LIU Tian, et al. Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation[J]. Chemical Engineering Journal, 2021, 407: 127178. |
60 | YU Shujun, LIU Yang, AI Yuejie, et al. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions[J]. Environmental Pollution, 2018, 242: 1-11. |
61 | G Bishwa Bidita VARADWAJ, OYETADE Oluwaseun A, RANA Surjyakanta, et al. Facile synthesis of three-dimensional Mg-Al layered double hydroxide/partially reduced graphene oxide nanocomposites for the effective removal of Pb2+ from aqueous solution[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17290-17305. |
62 | DONG Yuecen, KONG Xiangrui, LUO Xingshen, et al. Adsorptive removal of heavy metal anions from water by layered double hydroxide: A review[J]. Chemosphere, 2022, 303: 134685. |
63 | KHITOUS Mohamed, SALEM Zineb, HALLICHE Djamila. Effect of interlayer anions on chromium removal using Mg-Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies[J]. Chinese Journal of Chemical Engineering, 2016, 24(4): 433-445. |
64 | DIAS Adriana Cristina, FONTES Maurício Paulo Ferreira. Arsenic (Ⅴ) removal from water using hydrotalcites as adsorbents: A critical review[J]. Applied Clay Science, 2020, 191: 105615. |
65 | PARK Donghee, YUN Yeoung-Sang, PARK Jong Moon. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp[J]. Chemosphere, 2005, 60(10): 1356-1364. |
66 | NGUYEN Thi Hai, TRAN Hai Nguyen, NGUYEN Tien Vinh, et al. Single-step removal of arsenite ions from water through oxidation-coupled adsorption using Mn/Mg/Fe layered double hydroxide as catalyst and adsorbent[J]. Chemosphere, 2022, 295: 133370. |
67 | BABU POUDEL Milan, SHIN Miyeon, KIM Han Joo. Interface engineering of MIL-88 derived MnFe-LDH and MnFe2O3 on three-dimensional carbon nanofibers for the efficient adsorption of Cr(Ⅵ), Pb(Ⅱ), and As(Ⅲ) ions[J]. Separation and Purification Technology, 2022, 287: 120463. |
68 | WANG Huabin, WANG Siqi, CHEN Zhulei, et al. Engineered biochar with anisotropic layered double hydroxide nanosheets to simultaneously and efficiently capture Pb2+ and CrO4 2- from electroplating wastewater[J]. Bioresource Technology, 2020, 306: 123118. |
1 | 刘雯雯, 兰玉婷, 杨新宇, 等. 纳米水滑石材料的制备及应用研究进展[J]. 山东化工, 2021, 50(7): 69-70. |
LIU Wenwen, LAN Yuting, YANG Xinyu, et al. Progress in preparation and application of nano-hydrotalcite materials[J]. Shandong Chemical Industry, 2021, 50(7): 69-70. | |
2 | 孙金陆, 甄卫军, 李进. LDHs材料的结构、性质及其应用研究进展[J]. 化工进展, 2013, 32(3): 610-616. |
SUN Jinlu, ZHEN Weijun, LI Jin. Structure, properties and applications of LDHs[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 610-616. | |
3 | HE Jing, WEI Min, LI Bo, et al. Preparation of layered double hydroxides[M]//Layered Double Hydroxides. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005: 89-119. |
4 | LI Kunwei, KUMADA Nobuhiro, YONESAKI Yoshinori, et al. The pH effects on the formation of Ni/Al nitrate form layered double hydroxides (LDHs) by chemical precipitation and hydrothermal method[J]. Materials Chemistry and Physics, 2010, 121(1/2): 223-229. |
5 | ZAKARIA Seyed Amirabbas, AHMADI Seyyed Hamid, AMINI Mohammad Hassan. Chemiresistive gas sensors based on layered double hydroxides (LDHs) structures: A review[J]. Sensors and Actuators A: Physical, 2022, 346: 113827. |
6 | SUN Hongxin, CHU Zhenyu, HONG Dahai, et al. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: Fabrication, characterization and enhanced sensing properties to NO x at room temperature[J]. Journal of Alloys and Compounds, 2016, 658: 561-568. |
7 | WANG Di, LIU Zhi, HONG Ye, et al. Controlled preparation of multiple mesoporous CoAl-LDHs nanosheets for the high performance of NOx detection at room temperature[J]. RSC Advances, 2020, 10(57): 34466-34473. |
8 | PAN Xuemei, ZHANG Miaomiao, LIU Huiling, et al. Adsorption behavior and mechanism of acid orange 7 and methylene blue on self-assembled three-dimensional MgAl layered double hydroxide: Experimental and DFT investigation[J]. Applied Surface Science, 2020, 522: 146370. |
9 | MORILLO E, VILLAVERDE J. Advanced technologies for the remediation of pesticide-contaminated soils[J]. Science of the Total Environment, 2017, 586: 576-597. |
10 | Mohapatra Lagnamayee, Parida Kulamani. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts[J]. Journal of Materials Chemistry A, 2016, 4(28): 10744-10766. |
69 | 王宁宁. Ca-Al LDHs对水溶液中锑的去除作用研究[D]. 贵阳: 贵州大学, 2018. |
WANG Ningning. Study on properties of antimony removal in aqueous solution by Ca-Al LDHs[D]. Guiyang: Guizhou University, 2018. | |
70 | LI Peng, CHEN Ping, LIU Zhipeng, et al. Highly efficient elimination of uranium from wastewater with facilely synthesized Mg-Fe layered double hydroxides: Optimum preparation conditions and adsorption kinetics[J]. Annals of Nuclear Energy, 2020, 140: 107140. |
71 | 任树鹏, 齐宇彤, 石瑶, 等. 层状双氢氧化物负载生物炭对磷酸盐的吸附性能研究进展[J]. 环境化学, 2023, 42(2): 575-584. |
REN Shupeng, QI Yutong, SHI Yao, et al. The adsorption performance of layered double hydroxides functionalized biochar on phosphate: Research advances[J]. Environmental Chemistry, 2023, 42(2): 575-584. | |
72 | HU Fengping, WANG Min, PENG Xiaoming, et al. High-efficient adsorption of phosphates from water by hierarchical CuAl/biomass carbon fiber layered double hydroxide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 555: 314-323. |
73 | LEE Seon Yong, CHOI Jae-Woo, SONG Kyung Guen, et al. Adsorption and mechanistic study for phosphate removal by rice husk-derived biochar functionalized with Mg/Al-calcined layered double hydroxides via co-pyrolysis[J]. Composites Part B: Engineering, 2019, 176: 107209. |
74 | ALAGHA Omar, MANZAR Mohammad Saood, ZUBAIR Mukarram, et al. Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: Insight into behavior and mechanisms[J]. Nanomaterials, 2020, 10(7): 1361. |
75 | KEYIKOGLU Ramazan, KHATAEE Alireza, YOON Yeojoon. Layered double hydroxides for removing and recovering phosphate: Recent advances and future directions[J]. Advances in Colloid and Interface Science, 2022, 300: 102598. |
76 | LI Ronghua, WANG Jim J, ZHOU Baoyue, et al. Enhancing phosphate adsorption by Mg/Al layered double hydroxide functionalized biochar with different Mg/Al ratios[J]. Science of the Total Environment, 2016, 559: 121-129. |
77 | JIA Yunsheng, WANG Huoyan, ZHAO Xuesong, et al. Kinetics, isotherms and multiple mechanisms of the removal for phosphate by Cl-hydrocalumite[J]. Applied Clay Science, 2016, 129: 116-121. |
78 | BUATES Jittrera, IMAI Tsuyoshi. Application of biochar functionalized with layered double hydroxides: Improved plant growth performance after use as phosphate adsorbent[J]. Applied Sciences, 2021, 11(14): 6489. |
11 | CREPALDI Eduardo L, PAVAN Paulo C, VALIM João B. A new method of intercalation by anion exchange in layered double hydroxides[J]. Chemical Communications, 1999(2): 155-156. |
12 | ZHAO Xiaojie, ZHU Yuquan, XU Simin, et al. Anion exchange behavior of MⅡAl layered double hydroxides: A molecular dynamics and DFT study[J]. Physical Chemistry Chemical Physics, 2020, 22(35): 19758-19768. |
13 | GU Pengcheng, ZHANG Sai, LI Xing, et al. Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution[J]. Environmental Pollution, 2018, 240: 493-505. |
14 | LAIPAN Minwang, ZHU Runliang, CHEN Qingze, et al. From spent Mg/Al layered double hydroxide to porous carbon materials[J]. Journal of Hazardous Materials, 2015, 300: 572-580. |
15 | YANG Na, MA Jianzhong, SHI Jiabo, et al. Manipulate the nano-structure of layered double hydroxides via calcination for enhancing immobilization of anionic dyes on collagen fibers[J]. Journal of Colloid and Interface Science, 2022, 610: 182-193. |
16 | YE Cheng, DENG Jing, HUAI Lingyi, et al. Multifunctional capacity of CoMnFe-LDH/LDO activated peroxymonosulfate for p-arsanilic acid removal and inorganic arsenic immobilization: Performance and surface-bound radical mechanism[J]. Science of the Total Environment, 2022, 806: 150379. |
17 | CHUANG Yahui, LIU Chenghua, TZOU Yu-Min, et al. Comparison and characterization of chemical surfactants and bio-surfactants intercalated with layered double hydroxides (LDHs) for removing naphthalene from contaminated aqueous solutions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 366(1/2/3): 170-177. |
18 | QI Jing, ZHANG Wei, XIANG Ruijuan, et al. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction[J]. Advanced Science, 2015, 2(10): 1500199. |
19 | ZHANG Ye, CUI Bai, ZHAO Chunsong, et al. Co-Ni layered double hydroxides for water oxidation in neutral electrolyte[J]. Physical Chemistry Chemical Physics, 2013, 15(19): 7363-7369. |
20 | LU Zhiyi, QIAN Li, TIAN Yang, et al. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts[J]. Chemical Communications, 2016, 52(5): 908-911. |
21 | SONG Fang, HU Xile. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst[J]. Journal of the American Chemical Society, 2014, 136(47): 16481-16484. |
22 | SHOU Jianxin, JIANG Chunfang, WANG Fang, et al. Fabrication of Fe3O4/MgAl-layered double hydroxide magnetic composites for the effective decontamination of Co(Ⅱ) from synthetic wastewater[J]. Journal of Molecular Liquids, 2015, 207: 216-223. |
23 | YANG Zhe, JI Shanshan, GAO Wei, et al. Magnetic nanomaterial derived from graphene oxide/layered double hydroxide hybrid for efficient removal of methyl orange from aqueous solution[J]. Journal of Colloid and Interface Science, 2013, 408: 25-32. |
24 | INTACHAI Sonchai, NA NAKORN Mesa, KAEWNOK Anamika, et al. Versatile inorganic adsorbent for efficient and practical removal of hexavalent chromium in water[J]. Materials Chemistry and Physics, 2022, 288: 126388. |
25 | TAN Xiao, ZHANG Yinjie, LIU Meng, et al. Ultrasonic-assisted preparation of interlaced layered hydrotalcite (U-Fe/Al-LDH) for high-efficiency removal of Cr(Ⅵ): Enhancing adsorption-coupled reduction capacity and stability[J]. Chemosphere, 2022, 308: 136472. |
26 | BESSAIES Hanen, IFTEKHAR Sidra, DOSHI Bhairavi, et al. Synthesis of novel adsorbent by intercalation of biopolymer in LDH for the removal of arsenic from synthetic and natural water[J]. Journal of Environmental Sciences, 2020, 91: 246-261. |
27 | ZHU Zebing, XIANG Mingxue, LI Peng, et al. Surfactant-modified three-dimensional layered double hydroxide for the removal of methyl orange and rhodamine B: Extended investigations in binary dye systems[J]. Journal of Solid State Chemistry, 2020, 288: 121448. |
28 | KHORSHIDI Mahsa, ASADPOUR Saeid, SARMAST Narges, et al. A review of the synthesis methods, properties, and applications of layered double hydroxides/carbon nanocomposites[J]. Journal of Molecular Liquids, 2022, 348: 118399. |
29 | DAUD Muhammad, KAMAL Muhammad Shahzad, SHEHZAD Farrukh, et al. Graphene/layered double hydroxides nanocomposites: A review of recent progress in synthesis and applications[J]. Carbon, 2016, 104: 241-252. |
30 | MEILI L, LINS P V, ZANTA C L P S, et al. MgAl-LDH/Biochar composites for methylene blue removal by adsorption[J]. Applied Clay Science, 2019, 168: 11-20. |
31 | MISSAU Juliano, BERTUOL Daniel Assumpção, TANABE Eduardo Hiromitsu. Highly efficient adsorbent for removal of crystal violet dye from aqueous solution by CaAl/LDH supported on biochar[J]. Applied Clay Science, 2021, 214: 106297. |
32 | NAZIR Muhammad Altaf, BASHIR Muhammad Aswad, NAJAM Tayyaba, et al. Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects[J]. Microchemical Journal, 2021, 164: 105973. |
33 | GUAN Ting, FANG Liang, LU Yi, et al. A facile approach to synthesize 3D flower-like hierarchical NiCo layered double hydroxide microspheres and their enhanced adsorption capability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529: 907-915. |
34 | SHAN Ranran, YAN Liangguo, YANG Kun, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution[J]. Chemical Engineering Journal, 2014, 252: 38-46. |
79 | HE Xin, ZHONG Pei, QIU Xinhong. Remediation of hexavalent chromium in contaminated soil by Fe( Ⅱ )-Al layered double hydroxide[J]. Chemosphere, 2018, 210: 1157-1166. |
80 | WANG Zhen, LIU Xiaowei, LIANG Xuefeng, et al. Flooding-drainage regulate the availability and mobility process of Fe, Mn, Cd, and As at paddy soil[J]. Science of the Total Environment, 2022, 817: 152898. |
81 | MAO Fangqi, HAO Peipei, ZHU Yuquan, et al. Layered double hydroxides: Scale production and application in soil remediation as super-stable mineralizer[J]. Chinese Journal of Chemical Engineering, 2022, 41: 42-48. |
82 | ZHANG Lixun, HE Fangxin, MAO Wei, et al. Fast and efficient removal of Cr(Ⅵ) to ppb level together with Cr(Ⅲ) sequestration in water using layered double hydroxide interclated with diethyldithiocarbamate[J]. Science of the Total Environment, 2020, 727: 138701. |
83 | ZHANG Lixun, HE Fangxin, GUAN Yuntao. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution[J]. Journal of Hazardous Materials, 2022, 430: 128382. |
84 | XIANG Yulin, KANG Furen, XIANG Yuxiu, et al. Effects of humic acid-modified magnetic Fe3O4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109424. |
85 | EVERAERT Maarten, DEGRYSE Fien, MCLAUGHLIN Mike J, et al. Agronomic effectiveness of granulated and powdered P-exchanged Mg-Al LDH relative to struvite and MAP[J]. Journal of Agricultural and Food Chemistry, 2017, 65(32): 6736-6744. |
86 | SAJID Muhammad, IHSANULLAH Ihsanullah, KHAN Muhammad Tariq, et al. Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: A review[J]. Separation and Purification Technology, 2023, 305: 122453. |
87 | HUANG Hanhan, LI Zhaosong, WANG Haiyan, et al. Adsorption performance of layered double hydroxides for heavy metals removal in soil with the presence of microplastics[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108733. |
88 | 曾嘉庆, 高文艳, 李雪, 等. 有色冶炼场地重金属污染特征与修复研究进展[J]. 中国有色金属学报. DOI: 10.11817/j.ysxb.1004.0609.2022-43599 . |
ZENG Jiaqing, GAO Wenyan, LI Xue, et al. Research progress on characteristics and remediation of heavy metal pollution in non-ferrous smelting sites[J]. Transactions of Nonferrous Metals Society of China. DOI: 10.11817/j.ysxb.1004.0609.2022-43599 . | |
89 | 田念, 赵强, 王祁宁, 等. LDH用于CO2捕集与资源转化的研究进展[J]. 现代化工, 2017, 37(3): 53-57. |
35 | BOBDE P, SHARMA A K, PANCHAL D, et al. Layered double hydroxides (LDHs)-based photocatalysts for dye degradation: A review[J]. International Journal of Environmental Science and Technology, 2023, 20(5): 5733-5752. |
36 | GROVER Aman, MOHIUDDIN Irshad, MALIK Ashok Kumar, et al. Zn-Al layered double hydroxides intercalated with surfactant: Synthesis and applications for efficient removal of organic dyes[J]. Journal of Cleaner Production, 2019, 240: 118090. |
37 | YANG Cong, WANG Langrun, YU Yuqing, et al. Highly efficient removal of amoxicillin from water by Mg-Al layered double hydroxide/cellulose nanocomposite beads synthesized through in situ coprecipitation method[J]. International Journal of Biological Macromolecules, 2020, 149: 93-100. |
38 | CHAO Yanhong, ZHU Wenshuai, WU Xiangyang, et al. Application of graphene-like layered molybdenum disulfide and its excellent adsorption behavior for doxycycline antibiotic[J]. Chemical Engineering Journal, 2014, 243: 60-67. |
39 | MOHAPATRA Lagnamayee, PARIDA K M. Zn-Cr layered double hydroxide: Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants[J]. Separation and Purification Technology, 2012, 91: 73-80. |
40 | Dinari Mohammad, Mohamad Mohsen Momeni, Ghayeb Yousef. Photodegradation of organic dye by ZnCrLa-layered double hydroxide as visible-light photocatalysts[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(9): 9861-9869. |
41 | GUO Xiaoxi, WU Hongyang, WANG Huanhuan, et al. Sulfadiazine advanced oxidizing-degradation: Defects generation by boosting electron transfer at interfaces of Co-Cu LDH catalysts[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108411. |
42 | BOCCALON Elisa, GORRASI Giuliana, NOCCHETTI Morena. Layered double hydroxides are still out in the bloom: Syntheses, applications and advantages of three-dimensional flower-like structures[J]. Advances in Colloid and Interface Science, 2020, 285: 102284. |
43 | ANANTHARAJ Sengeni, KARTHICK Kannimuthu, KUNDU Subrata. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism[J]. Materials Today Energy, 2017, 6: 1-26. |
44 | Wan-Kuen JO, TONDA Surendar. Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants[J]. Journal of Hazardous Materials, 2019, 368: 778-787. |
45 | ZHAO Guoqing, LI Caifeng, WU Xia, et al. Reduced graphene oxide modified NiFe-calcinated layered double hydroxides for enhanced photocatalytic removal of methylene blue[J]. Applied Surface Science, 2018, 434: 251-259. |
89 | TIAN Nian, ZHAO Qiang, WANG Qining, et al. Research progress of CO2 capture and resource transformation by layered double hydroxide[J]. Modern Chemical Industry, 2017, 37(3): 53-57. |
90 | ZHU Xuancan, Meng LYU, GE Tianshu, et al. Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air[J]. Cell Reports Physical Science, 2021, 2(7): 100484. |
91 | YANG Ying, CHEN Kai, HUANG Liang, et al. Research on Li0.3Na0.18K0.52NO3 promoted Mg20Al-CO3 LDH/GO composites for CO2 capture[J]. Journal of Industrial and Engineering Chemistry, 2021, 102: 86-94. |
92 | LARA-GARCÍA Hugo A, GAO Wanlin, Antonio GÓMEZ-CORTÉS, et al. High and efficient CO2 capture in molten nitrate-modified Mg-Al-palmitate layered double oxides at high pressures and elucidation of carbonation mechanisms by in situ DRIFT spectroscopy analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5501-5509. |
93 | Garcia-Gallastegui Ainara, Iruretagoyena Diana, Mokhtar Mohamed, et al. Layered double hydroxides supported on multi-walled carbon nanotubes: Preparation and CO2adsorption characteristics[J]. Journal of Materials Chemistry, 2012, 22(28): 13932-13940. |
94 | WANG Yanan, ZHANG Ning, WU Hong, et al. Exfoliation-free layered double hydroxides laminates intercalated with amino acids for enhanced CO2 separation of mixed matrix membrane[J]. Journal of Membrane Science, 2021, 618: 118691. |
95 | CHOI Goeun, YANG Jae-Hun, PARK Ga-Young, et al. Intercalative ion-exchange route to amino acid layered double hydroxide nanohybrids and their sorption properties[J]. European Journal of Inorganic Chemistry, 2015, 2015(6): 925-930. |
96 | KONG Tingting, HUANG Jian, JIA Xingang, et al. Synthesis and optimization of Ti/Li/Al ternary layered double hydroxides for efficient photocatalytic reduction of CO2 to CH4 [J]. Scientific Reports, 2019, 9: 5659. |
97 | KAWAMURA Shogo, PUSCASU Magda C, YOSHIDA Yusuke, et al. Tailoring assemblies of plasmonic silver/gold and zinc-gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV-visible light[J]. Applied Catalysis A: General, 2015, 504: 238-247. |
98 | ZHANG Guanhua, ZHANG Xueqiang, MENG Yue, et al. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review[J]. Chemical Engineering Journal, 2020, 392: 123684. |
99 | BI Zhexu, GUO Ruitang, HU Xing, et al. Research progress on photocatalytic reduction of CO2 based on LDH materials[J]. Nanoscale, 2022, 14(9): 3367-3386. |
100 | TAN Ling, XU Simin, WANG Zelin, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm[J]. Angewandte Chemie International Edition, 2019, 58(34): 11860-11867. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[4] | 刘柏成, 李法云, 赵琦慧, 吝美霞. 禾本科植物修复多环芳烃污染土壤研究进展[J]. 化工进展, 2023, 42(7): 3736-3748. |
[5] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[6] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[7] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[8] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[9] | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[10] | 颜子涵, 陈群云, 李卓, 付融冰, 李彦伟, 吴志根. 改进型土壤破碎混拌结构的性能数值分析与优化[J]. 化工进展, 2022, 41(S1): 72-80. |
[11] | 王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
[12] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
[13] | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
[14] | 张卫风, 周武, 王秋华. 相变吸收捕集烟气中CO2技术的发展现状[J]. 化工进展, 2022, 41(4): 2090-2101. |
[15] | 孔祥宇, 谢亮, 王延民, 翟尚鹏, 王建国. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |