1 |
DAS S, PÉREZ-RAMÍREZ J, GONG Jinlong, et al. Core-shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO2 [J]. Chemical Society Reviews, 2020, 49(10): 2937-3004.
|
2 |
HURST T F, COCKERILL T T, FLORIN N H. Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage[J]. Energy & Environmental Science, 2012, 5(5): 7132-7150.
|
3 |
WEI Longfu, LIN Jinchi, XIE Shunji, et al. Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays[J]. Nanoscale, 2019, 11(26): 12530-12536.
|
4 |
XIA Tong, LONG Ran, GAO Chao, et al. Design of atomically dispersed catalytic sites for photocatalytic CO2 reduction[J]. Nanoscale, 2019, 11(23): 11064-11070.
|
5 |
SULTANA S, CHANDRA SAHOO P, MARTHA S, et al. A review of harvesting clean fuels from enzymatic CO2 reduction[J]. RSC Advances, 2016, 6(50): 44170-44194.
|
6 |
JADHAV S G, VAIDYA P D, BHANAGE B M, et al. Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies[J]. Chemical Engineering Research and Design, 2014, 92(11): 2557-2567.
|
7 |
ASHLEY A, THOMPSON A, O'HARE D. Non-metal-mediated homogeneous hydrogenation of CO2 to CH3OH[J]. Angewandte Chemie, 2009, 48(52): 9839-9843.
|
8 |
LI Fengwang, MACFARLANE D R, ZHANG Jie. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction[J]. Nanoscale, 2018, 10(14): 6235-6260.
|
9 |
ZHANG Hongyi, ZHANG Yinjia, LI Yuyang, et al. Cu nanowire-catalyzed electrochemical reduction of CO or CO2 [J]. Nanoscale, 2019, 11(25): 12075-12079.
|
10 |
BAO Yipeng, WANG Jin, WANG Qi, et al. Immobilization of catalytic sites on quantum dots by ligand bridging for photocatalytic CO2 reduction[J]. Nanoscale, 2020, 12(4): 2507-2514.
|
11 |
LU Chang, ITANZE D S, ARAGON A G, et al. Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity[J]. Nanoscale, 2020, 12(5): 2987-2991.
|
12 |
FU Fangyu, SHOWN I, LI C S, et al. KSCN-induced interfacial dipole in black TiO2 for enhanced photocatalytic CO2 reduction[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25186-25194.
|
13 |
ZHAO Yufei, WATERHOUSE G I N, CHEN Guangbo, et al. Two-dimensional-related catalytic materials for solar-driven conversion of CO x into valuable chemical feedstocks[J]. Chemical Society Reviews, 2019, 48(7): 1972-2010.
|
14 |
WU Shimiao, PANG Hong, ZHOU Wei, et al. Stabilizing CuGaS2 by crystalline CdS through an interfacial Z-scheme charge transfer for enhanced photocatalytic CO2 reduction under visible light[J]. Nanoscale, 2020, 12(16): 8693-8700.
|
15 |
BILLO T, SHOWN I, ANBALAGAN A K, et al. A mechanistic study of molecular CO2 interaction and adsorption on carbon implanted SnS2 thin film for photocatalytic CO2 reduction activity[J]. Nano Energy, 2020, 72: 104717.
|
16 |
GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686.
|
17 |
GAWANDE M B, FORNASIER P, ZBORIL R. Carbon-based single-atom catalysts for advanced applications[J]. ACS Catalysis, 2020, 10(3): 2231-2259.
|
18 |
WANG Zhiyong, PU Yuan, WANG Dan, et al. Recent advances in metal-free carbon-based nanocatalysts[J]. Chinese Science Bulletin, 2018, 63(34): 3517-3529.
|
19 |
LIU Jian, QIAO Shizhang, BUDI H S, et al. Monodisperse yolk-shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors[J]. Angewandte Chemie International Edition, 2010, 49(29): 4981-4985.
|
20 |
NASR M, EID C, HABCHI R, et al. Recent progress on titanium dioxide nanomaterials for photocatalytic applications[J]. ChemSusChem, 2018, 11(18): 3023-3047.
|
21 |
TAN Liangliang, CHAI Siangpiao, MOHAMED A R. Synthesis and applications of graphene-based TiO2 photocatalysts[J]. ChemSusChem, 2012, 5(10): 1868-1882.
|
22 |
LI Youji, CHEN Wei, LI Leiyong, et al. Photoactivity of titanium dioxide/carbon felt composites prepared with the assistance of supercritical carbon dioxide: Effects of calcination temperature and supercritical conditions[J]. Science China-Chemistry, 2011, 54(3): 497-505.
|
23 |
HABISREUTINGER S N, SCHMIDT-MENDE L, STOLARCZYK J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition, 2013, 52(29): 7372-7408.
|
24 |
RAN Lei, QIU Shi, ZHAI Panlong, et al. Conformal macroporous inverse opal oxynitride-based photoanode for robust photo-electrochemical water splitting[J]. Journal of the American Chemical Society, 2021, 143(19): 7402-7413.
|
25 |
WU Shiqun, TAN Xianjun, LEI Juying, et al. Ga-doped and Pt-loaded porous TiO2-SiO2 for photocatalytic nonoxidative coupling of methane[J]. Journal of the American Chemical Society, 2019, 141(16): 6592-6600.
|
26 |
ZHAO Heng, WU Min, LIU Jing, et al. Synergistic promotion of solar-driven H2 generation by three-dimensionally ordered macroporous structured TiO2-Au-CdS ternary photocatalyst[J]. Applied Catalysis B: Environmental, 2016, 184: 182-190.
|
27 |
LIU Wenfang, WANG Aijun, TANG Junjie, et al. Preparation and photocatalytic activity of hierarchically 3D ordered macro/mesoporous titania inverse opal films[J]. Microporous and Mesoporous Materials, 2015, 204: 143-148.
|
28 |
ZHANG Qing, XIAO Wei, GUO Wanhui, et al. Macroporous array induced multiscale modulation at the surface/interface of Co(OH)2/NiMo self‐supporting electrode for effective overall water splitting[J]. Advanced Functional Materials, 2021, 31(33): 2102117.
|
29 |
SHEN Kui, ZHANG Lei, CHEN Xiaodong, et al. Ordered macro-microporous metal-organic framework single crystals[J]. Science, 2018, 359(6372): 206-210.
|
30 |
LI Youji, LI Ming, XU Peng, et al. Efficient photocatalytic degradation of acid orange 7 over N-doped ordered mesoporous titania on carbon fibers under visible-light irradiation based on three synergistic effects[J]. Applied Catalysis A: General, 2016, 524: 163-172.
|
31 |
GUO Yunlong, WEN Meicheng, SONG Shengnan, et al. Enhanced catalytic elimination of typical VOCs over ZnCoO x catalyst derived from in situ pyrolysis of ZnCo bimetallic zeolitic imidazolate frameworks[J]. Applied Catalysis B: Environmental, 2022, 308: 121212.
|
32 |
AN Taicheng, LIU Jikai, LI Guiying, et al. Structural and photocatalytic degradation characteristics of hydrothermally treated mesoporous TiO2 [J]. Applied Catalysis A: General, 2008, 350(2): 237–243.
|
33 |
TAKAYAMA T, SATO K, FUJIMURA T, et al. Photocatalytic CO2 reduction using water as an electron donor by a powdered Z-scheme system consisting of metal sulfide and an RGO-TiO2 composite[J]. Faraday Discussion, 2017, 198: 397-407.
|
34 |
LI Mengli, ZHANG Lingxia, WU Meiying, et al. Mesostructured CeO2/g-C3N4 nanocomposites:remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations[J]. Nano Energy, 2016, 19: 145-155.
|
35 |
TU Wenguang, ZHOU Yong, LIU Qi, et al. Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels[J]. Advanced Functional Materials, 2012, 22(6): 1215-1221.
|
36 |
LI Xing, BAI Yang, SHI Xian, et al. Mesoporous g-C3N4/MXene (Ti3C2T x ) heterojunction as a 2D electronic charge transfer for efficient photocatalytic CO2 reduction[J]. Applied Surface Science, 2021, 546: 149111.
|
37 |
WANG Li, CHEN Deli, MIAO Shuqi, et al. Nitric acid-assisted growth of InVO4 nanobelts on protonated ultrathin C3N4 nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO2 conversion[J].Chemical Engineering Journal, 2022, 434: 133867.
|
38 |
NISHIiMURA A, ISHIDA N, TATEMATSU D, et al. Effect of Fe loading condition and reductants on CO2 reduction performance with Fe/TiO2 photocatalyst[J]. International Journal of Photoenergy, 2017, 2017: 1-11.
|
39 |
YANG Min, WANG Peng, LI Youji, et al. Graphene aerogel-based NiAl-LDH/g-C3N4 with ultratight sheet-sheet heterojunction for excellent visible-light photocatalytic activity of CO2 reduction[J]. Applied Catalysis B: Environmental, 2022, 306: 121065.
|