化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 190-198.DOI: 10.16085/j.issn.1000-6613.2022-0827
收稿日期:
2022-05-06
修回日期:
2022-06-22
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
程淑艳
作者简介:
寇佳伟(1984—),男,博士,讲师,研究方向为类水滑石功能材料。E-mail:koujiawei@tyut.edu.cn。
基金资助:
KOU Jiawei1(), CHENG Shuyan2(), CHENG Fangqin3
Received:
2022-05-06
Revised:
2022-06-22
Online:
2022-10-20
Published:
2022-11-10
Contact:
CHENG Shuyan
摘要:
类水滑石材料是一类特殊的二维层状阴离子黏土,其具有结构组成可调、记忆效应、结构有序等诸多优良特性,被认为是安全绿色的新型光催化剂。本文总结了类水滑石材料结构和特性,并阐明其主要特性在光催化过程中的应用;对各种类水滑石材料的光催化CO2还原性能进行了对比;综述了光催化CO2还原的机理及其发展所面临的挑战;根据光催化CO2还原的基本过程,从光吸收、载流子分离和界面反应等角度对类水滑石基光催化剂的发展现状进行分类介绍。尽管类水滑石基光催化剂的研究已取得一定进展,但仍需进一步探究其光催化机理、各组分间的协同作用机理以及界面反应机理,以期实现类水滑石基光催化剂结构的合理设计和活性位点的精准调控。
中图分类号:
寇佳伟, 程淑艳, 程芳琴. 类水滑石基催化剂光催化二氧化碳还原研究进展[J]. 化工进展, 2022, 41(S1): 190-198.
KOU Jiawei, CHENG Shuyan, CHENG Fangqin. Research advance of hydrotalcite-based catalysts in photocatalytic reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 190-198.
类水滑石基催化剂 | 主要产物 | 产率/μmol·h-1·g-1 | 参考文献 |
---|---|---|---|
β-In2S3/NiAl-HTLCs | CH4 | 36.1 | [ |
TiO2/NiAl-HTLCs | CH4 | 20.56 | [ |
Fe3O4/MgAl-HTLCs | CO | 442.2 | [ |
TiO2-x /CoAl-HTLCs | CH3OH | 251 | [ |
Ag(Au)/Zn3Ga-HTLCs | CO | 231 | [ |
NCDs/g-C3N4/CoAl-HTLCs | CH4 | 25.69 | [ |
ZnCuGa-HTLCs | CH3OH | 26 | [ |
表1 类水滑石基催化剂的种类及光催化CO2还原特性
类水滑石基催化剂 | 主要产物 | 产率/μmol·h-1·g-1 | 参考文献 |
---|---|---|---|
β-In2S3/NiAl-HTLCs | CH4 | 36.1 | [ |
TiO2/NiAl-HTLCs | CH4 | 20.56 | [ |
Fe3O4/MgAl-HTLCs | CO | 442.2 | [ |
TiO2-x /CoAl-HTLCs | CH3OH | 251 | [ |
Ag(Au)/Zn3Ga-HTLCs | CO | 231 | [ |
NCDs/g-C3N4/CoAl-HTLCs | CH4 | 25.69 | [ |
ZnCuGa-HTLCs | CH3OH | 26 | [ |
1 | LI Xin, YU Jiaguo, Jingxiang LOW, et al. Engineering heterogeneous semiconductors for solar water splitting[J]. Journal of Materials Chemistry A, 2015, 3(6): 2485-2534. |
2 | LIU Jun, MA Nanke, WU Wei, et al. Recent progress on photocatalytic heterostructures with full solar spectral responses[J]. Chemical Engineering Journal, 2020, 393: 124719. |
3 | HALMANN M. Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells[J]. Nature, 1978, 275(5676): 115-116. |
4 | KAWAMURA S, PUSCASU M C, YOSHIDA Y, et al. Tailoring assemblies of plasmonic silver/gold and zinc-gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV-visible light[J]. Applied Catalysis A: General, 2015, 504: 238-247. |
5 | SCHREIER M, GAO P, MAYER M T, et al. Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst[J]. Energy & Environmental Science, 2015, 8(3): 855-861. |
6 | SATO Shunsuke, ARAI Takeo, MORIKAWA Takeshi, et al. Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts[J]. Journal of the American Chemical Society, 2011, 133(39): 15240-15243. |
7 | ARAI Takeo, SATO Shunsuke, KAJINO Tsutomu, et al. Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: Enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes[J]. Energy & Environmental Science, 2013, 6(4): 1274-1282. |
8 | CHU Sheng, Pengfei OU, GHAMARI Pegah, et al. Photoelectrochemical CO2 reduction into syngas with the metal/oxide interface[J]. Journal of the American Chemical Society, 2018, 140(25): 7869-7877. |
9 | KANECO Satoshi, UENO Yousuke, KATSUMATA Hideyuki, et al. Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol[J]. Chemical Engineering Journal, 2009, 148(1): 57-62. |
10 | CHOI S K, KANG U, LEE S, et al. Sn-coupled p-Si nanowire arrays for solar formate production from CO2 [J]. Advanced Energy Materials, 2014, 4(11): 1301614. |
11 | ALENEZI K, IBRAHIM S K, LI P, et al. Solar fuels: photoelectrosynthesis of CO from CO2 at p-type Si using Fe porphyrin electrocatalysts[J]. Chemistry-a European Journal, 2013, 19(40): 13522-13527. |
12 | O’M BOCKRIS J, WASS J C. The photoelectrocatalytic reduction of carbon-dioxide[J]. Journal of the Electrochemical Society, 1989, 136(9): 2521-2528. |
13 | WON D H, CHUNG J, PARK S H, et al. Photoelectrochemical production of useful fuels from carbon dioxide on a polypyrrole-coated p-ZnTe photocathode under visible light irradiation[J]. Journal of Materials Chemistry A, 2015, 3(3): 1089-1095. |
14 | GUZMAN Diego, ISAACS Mauricio, Igor OSORIO-ROMAN, et al. Photoelectrochemical reduction of carbon dioxide on quantum-dot-modified electrodes by electric field directed layer-by-layer assembly methodology[J]. ACS Applied Materials & Interfaces, 2015, 7(36): 19865-19869. |
15 | BACHMEIER A, MURPHY B J, ARMSTRONG F A. A multi-heme flavoenzyme as a solar conversion catalyst[J]. Journal of the American Chemical Society, 2014, 136(37): 12876-12879. |
16 | SAKIMOTO K K, WONG A B, YANG P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77. |
17 | WANG K, WANG T, ISLAM Q A, et al. Layered double hydroxide photocatalysts for solar fuel production[J]. Chinese Journal of Catalysis, 2021, 42(11): 1944-1975. |
18 | ZHAO Guoqing, ZOU Jiao, CHEN Xiaoqing, et al. Layered double hydroxides materials for photo(electro-) catalytic applications[J]. Chemical Engineering Journal, 2020, 397: 125407. |
19 | FEITKNECHT W. The formation of double hydroxides between bi- and tri-valent metals[J]. Helvetica Chimica Acta, 1942, 25: 555-569. |
20 | ALLMANN Rudolf. Crystal structure of pyroaurite[J]. Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry, 1968, 24(7): 972-977. |
21 | TAYLOR H F. Segregation and cation-ordering in sjogrenite and pyroaurite[J]. Mineralogical Magazine, 1969, 37(287): 338-342. |
22 | YANG Zhongzhu, WEI Jingjing, ZENG Guangming, et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2 [J]. Coordination Chemistry Reviews, 2019, 386: 154-182. |
23 | XU Ming, WEI Min. Layered double hydroxide-based catalysts: recent advances in preparation, structure, and applications[J]. Advanced Functional Materials, 2018, 28(47): 1802943. |
24 | NALAWADE P, AWARE B, KADAM V J, et al. Layered double hydroxides: a review[J]. Journal of Scientific & Industrial Research, 2009, 68(4): 267-272. |
25 | FAN G, LI F, EVANS D G, et al. Catalytic applications of layered double hydroxides: recent advances and perspectives[J]. Chemical Society Reviews, 2014, 43(20): 7040-7066. |
26 | MISHRA Geetanjali, DASH Barsha, PANDEY Sony. Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials[J]. Applied Clay Science, 2018, 153: 172-186. |
27 | MARAPPA S, RADHA S, KAMATH P V. Nitrate-intercalated layered double hydroxides structure model, order, and disorder[J]. European Journal of Inorganic Chemistry, 2013, 12: 2122-2128. |
28 | TANG Junwang, ZOU Zhigang, YE Jinhua. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angewandte Chemie International Edition, 2004, 43(34): 4563-4566. |
29 | ZHAO Yufei, ZHANG Shitong, LI Bei, et al. A family of visible-light responsive photocatalysts obtained by dispersing CrO6 octahedra into a hydrotalcite matrix[J]. Chemistry: A European Journal, 2011, 17(47): 13175-13181. |
30 | MAEDA Kazuhiko, SAKAMOTO Naoyuki, IKEDA Takahiro, et al. Preparation of core-shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light[J]. Chemistry—A European Journal, 2010, 16(26): 7750-7759. |
31 | PAREDES S P, VALENZUELA M A, FETTER G, et al. TiO2/MgAl layered double hydroxides mechanical mixtures as efficient photocatalysts in phenol degradation[J]. Journal of Physics and Chemistry of Solids, 2011, 72(8): 914-919. |
32 | PARIDA Kulamani, MOHAPATRA Lagnamayee, BALIARSINGH Niranjan. Effect of Co2+ substitution in the framework of carbonate intercalated Cu/Cr LDH on structural, electronic, optical, and photocatalytic properties[J]. Journal of Physical Chemistry C, 2012, 116(42): 22417-22424. |
33 | XIONG Xuyang, ZHAO Yufei, SHI Run, et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals[J]. Science Bulletin, 2020, 65(12): 987-994. |
34 | XU Z, ZHANG J, ADEBAJO M O, et al. Catalytic applications of layered double hydroxides and derivatives[J]. Applied Clay Science, 2011, 53(2): 139-150. |
35 | CHONG Ruifeng, SU Caihong, DU Yuqing, et al. Insights into the role of MgAl layered double oxides interlayer in Pt/TiO2 toward photocatalytic CO2 reduction[J]. Journal of Catalysis, 2018, 363: 92-101. |
36 | SANTOS R M M, TRONTO J, BRIOIS V, et al. Thermal decomposition and recovery properties of ZnAl-CO3 layered double hydroxide for anionic dye adsorption: insight into the aggregative nucleation and growth mechanism of the LDH memory effect[J]. Journal of Materials Chemistry A, 2017, 5(20): 9998-10009. |
37 | MOKHTAR M, INAYAT A, OFILI J, et al. Thermal decomposition, gas phase hydration and liquid phase reconstruction in the system Mg/Al hydrotalcite/mixed oxide: a comparative study[J]. Applied Clay Science, 2010, 50(2): 176-181. |
38 | PENG Feng, WANG Donghui, CAO Huiliang, et al. Loading 5-Fluorouracil into calcined Mg/Al layered double hydroxide on AZ31 via memory effect[J]. Materials Letters, 2018, 213(383-386. |
39 | HAN Jingbin, YAN Dongpeng, SHI Wenying, et al. Layer-by-layer ultrathin films of azobenzene-containing polymer/layered double hydroxides with reversible photoresponsive behavior[J]. Journal of Physical Chemistry B, 2010, 114(17): 5678-5685. |
40 | GONZALEZ M A, PAVLOVIC I, ROJAS-DELGADO R, et al. Removal of Cu2+, Pb2+ and Cd2+ by layered double hydroxide-humate hybrid. Sorbate and sorbent comparative studies[J]. Chemical Engineering Journal, 2014, 254: 605-611. |
41 | WANG Wei, WANG Shengping, MA Xinbin, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. |
42 | XIE Shunji, ZHANG Qinghong, LIU Guodong, et al. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures[J]. Chemical Communications, 2016, 52(1): 35-59. |
43 | CHANG Xiaoxia, WANG Tuo, YANG Piaoping, et al. The development of cocatalysts for photoelectrochemical CO2 reduction[J]. Advanced Materials, 2019, 31(31): 1804710. |
44 | PRASAD C, TANG H, BAHADUR I. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: a recent review[J]. Journal of Molecular Liquids, 2019, 281: 634-654. |
45 | LI Kan, PENG Bosi, PENG Tianyou. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels[J]. ACS Catalysis, 2016, 6(11): 7485-7527. |
46 | TU Wenguang, ZHOU Yong, ZOU Zhigang. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects[J]. Advanced Materials, 2014, 26(27): 4607-4626. |
47 | SHEN Qi, CHEN Zuofeng, HUANG Xiaofeng, et al. High-yield and selective photoelectrocatalytic reduction of CO2 to formate by metallic copper decorated Co3O4 nanotube arrays[J]. Environmental Science & Technology, 2015, 49(9): 5828-5835. |
48 | HARA Kohjiro, KUDO Akihiko, SAKATA Tadayoshi, et al. High efficiency electrochemical reduction of carbon dioxide under high-pressure on a gas diffusion electrode containing pt catalysts[J]. Journal of the Electrochemical Society, 1995, 142(4): L57-L59. |
49 | MOHAPATRA Lagnamayee, PARIDA Kulamani. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts[J]. Journal of Materials Chemistry A, 2016, 4(28): 10744-10766. |
50 | HAO Xiaojie, TAN Ling, XU Yanqi, et al. Engineering active Ni sites in ternary layered double hydroxide nanosheets for a highly selective photoreduction of CO2 to CH4 under irradiation above 500nm[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 3008-3015. |
51 | HOU Xiaoxiao, XU Chenghua, LIU Yulu, et al. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde[J]. Journal of Catalysis, 2019, 379: 147-153. |
52 | WANG Ruonan, QIU Zhongyong, WAN Shipeng, et al. Insight into mechanism of divalent metal cations with different d-bands classification in layered double hydroxides for light-driven CO2 reduction[J]. Chemical Engineering Journal, 2022, 427: 130863. |
53 | ZHOU Ling, SLANY Michal, BAI Bingbing, et al. Enhanced removal of sulfonated lignite from oil wastewater with multidimensional MgAl-LDH nanoparticles[J]. Nanomaterials, 2021, 11(4): 861. |
54 | WANG Kaixuan, MIAO Chenglin, LIU Yanan, et al. Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction[J]. Applied Catalysis B-Environmental, 2020, 270: 118878. |
55 | JO W K, KUMAR S, TONDA S. N-doped C dot/CoAl-layered double hydroxide/g-C3N4 hybrid composites for efficient and selective solar-driven conversion of CO2 into CH4 [J]. Composites Part B: Engineering, 2019, 176: 107212. |
56 | MIAO Yufang, GUO Ruitang, GU Jingwen, et al. Fabrication of β-In2S3/NiAl-LDH heterojunction photocatalyst with enhanced separation of charge carriers for efficient CO2 photocatalytic reduction[J]. Applied Surface Science, 2020, 527: 146792. |
57 | Wankuen JO, KUMAR Santosh, TONDA Surendar. A green approach to the fabrication of a TiO2/NiAl-LDH core-shell hybrid photocatalyst for efficient and selective solar-powered reduction of CO2 into value-added fuels[J]. Journal of Materials Chemistry A, 2020, 8(16): 8020-8032. |
58 | GAO Ge, ZHU Zhi, ZHENG Jia, et al. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism[J]. Journal of Colloid and Interface Science, 2019, 555: 1-10. |
59 | ZIARATI Abolfazl, BADIEI Alireza, GRILLO Rossella, et al. 3D Yolk@shell TiO2- x /LDH architecture: tailored structure for visible light CO2 conversion[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5903-5910. |
60 | AHMED Naveed, MORIKAWA Motoharu, IZUMI Yasuo. Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts[J]. Catalysis Today, 2012, 185(1): 263-269. |
61 | LAKHI K S, PARK D H, AL-BAHILY K, et al. Mesoporous carbon nitrides: synthesis, functionalization, and applications[J]. Chemical Society Reviews, 2017, 46(1): 72-101. |
[1] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[2] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[3] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[4] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[5] | 杨状, 李闰华, 强增寿, 王雅君, 姚文清. 废弃制冷剂R134a的光催化降解[J]. 化工进展, 2023, 42(4): 2109-2114. |
[6] | 胥生元, 郝玮, 王杰, 高文生, 谢克锋. 半导体光催化剂BiOCl异质结的构建及应用[J]. 化工进展, 2023, 42(3): 1493-1507. |
[7] | 陈邦富, 欧阳平, 李宇涵, 段有雨, 董帆. ZnSn(OH)6 基纳米材料在环境光催化中的应用[J]. 化工进展, 2023, 42(2): 756-764. |
[8] | 姚稳, 张雨晨, 滕文馨, 黎江玲. 表面活性剂对制备Ca掺杂β-In2S3微观结构的影响及其光催化降解甲基橙性能[J]. 化工进展, 2023, 42(2): 774-782. |
[9] | 程荣, 邓子祺, 夏锦程, 李江, 石磊, 郑祥. 光催化系统灭活微生物气溶胶的研究进展[J]. 化工进展, 2023, 42(2): 957-968. |
[10] | 多佳, 姚国栋, 王英霁, 曾旭, 金滨滨. 改性Au-TiO2光降解废水中诺氟沙星的影响[J]. 化工进展, 2023, 42(2): 624-630. |
[11] | 章萍萍, 丁书海, 高晶晶, 赵敏, 俞海祥, 刘玥宏, 谷麟. 碳量子点修饰半导体复合光催化剂降解水中有机污染物[J]. 化工进展, 2023, 42(10): 5487-5500. |
[12] | 宋亚丽, 李紫燕, 杨彩荣, 黄龙, 张宏忠. 非金属元素掺杂石墨相氮化碳光催化材料的研究进展[J]. 化工进展, 2023, 42(10): 5299-5309. |
[13] | 张金辉, 张焕, 朱新锋, 宋忠贤, 康海彦, 刘红盼, 邓炜, 侯广超, 李桂亭, 黄真真. UiO-66复合材料用于典型有机污染物吸附和光催化氧化的研究进展[J]. 化工进展, 2023, 42(1): 445-456. |
[14] | 刘怡璇, 林跃朝, 马伟芳. 可见光催化降解水中卤代有机污染物的研究进展[J]. 化工进展, 2022, 41(S1): 571-579. |
[15] | 杨福, 刘梦婷, 马淑兰, 魏祎暄, 欧锐, 王旭裕, 李露露, 张武翔, 潘建明. 挥发性有机化合物催化消除前沿技术及研究进展[J]. 化工进展, 2022, 41(9): 4801-4812. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |