化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5299-5309.DOI: 10.16085/j.issn.1000-6613.2022-2180

• 材料科学与技术 • 上一篇    下一篇

非金属元素掺杂石墨相氮化碳光催化材料的研究进展

宋亚丽1(), 李紫燕1, 杨彩荣1, 黄龙2, 张宏忠1()   

  1. 1.郑州轻工业大学材料与化学工程学院,环境污染治理与生态修复河南省协同创新中心,河南 郑州 450001
    2.郑州大学生态与环境学院,河南 郑州 450001
  • 收稿日期:2022-11-23 修回日期:2023-06-04 出版日期:2023-10-15 发布日期:2023-11-11
  • 通讯作者: 张宏忠
  • 作者简介:宋亚丽(1988—),女,博士,讲师,主要研究方向为光催化技术在水体修复中的应用。E-mail:songyl@zzuli.edu.cn
  • 基金资助:
    国家自然科学基金(22006139);河南省创新型科技团队项目(CXTD2015023)

Research progress of non-metallic element doped graphitic carbon nitride photocatalytic materials

SONG Yali1(), LI Ziyan1, YANG Cairong1, HUANG Long2, ZHANG Hongzhong1()   

  1. 1.Henan Collaborative Innovation Center for Environmental Pollution Control and Ecological Restoration, College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, Henan, China
    2.College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, Henan, China
  • Received:2022-11-23 Revised:2023-06-04 Online:2023-10-15 Published:2023-11-11
  • Contact: ZHANG Hongzhong

摘要:

石墨相氮化碳(g-C3N4)是一种非金属光催化材料,其具有制备成本低、制备过程简单、绿色、无二次污染、带隙能可调控、热稳定性高等特点,使其成为人们在能源与环境领域研究和关注的焦点。然而,g-C3N4还存在比表面积小、禁带宽度较大、光生电子和空穴复合过快等缺点,限制了其发展。非金属元素掺杂可以对g-C3N4进行改性以有效解决以上问题,使其带隙减小,拓宽光谱响应范围,抑制光生电子-空穴对的复合,提高光吸收能力,来提高其光催化性能。本文对非金属元素掺杂g-C3N4的合成方法、应用等方面进行综述,从非金属单元素掺杂(单元素自掺杂和其他单元素掺杂)、非金属多元素共掺杂方面进行了总结。最后指出了在非金属元素掺杂g-C3N4方面,仍需要关注g-C3N4产量偏低、可见光利用效率不足、回收较难等问题,并强调了非金属元素掺杂g-C3N4在治理环境污染和应对能源危机方面的重要作用。

关键词: 石墨相氮化碳, 非金属元素, 掺杂改性, 光催化性能

Abstract:

Graphitic carbon nitride (g-C3N4) is a non-metallic photocatalytic material. It has the advantages of low cost, simple preparation process, green, no secondary pollution, adjustable band gap energy and high thermal stability. It has become the research hotspot in the field of energy and environment. However, g-C3N4 possesses the disadvantages of small specific surface area, large band gap and fast recombination rate of photogenerated electrons and holes, which limits its application. Non-metallic element doping can effectively solve the above problems by reducing the band gap, broadening the spectral response range, inhibiting the recombination of photogenerated electron-hole pairs and improving the light absorption capacity. In this work, the synthesis methods and application of non-metallic element doped g-C3N4 were reviewed. The non-metallic single element doping (single element self-doping and other single element doping) and non-metallic multi-element co-doping were summarized. As for the study on non-metallic element doped g-C3N4, it was still necessary to pay attention to the low yield of g-C3N4, insufficient utilization efficiency of visible light and reclamation difficulty. The important role of non-metallic element doped g-C3N4 in environmental pollution and the energy crisis was also emphasized.

Key words: graphitic carbon nitride (g-C3N4), non-metallic doping, doping modification, photocatalytic performance

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn