化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 177-189.DOI: 10.16085/j.issn.1000-6613.2022-1148
收稿日期:
2022-06-20
修回日期:
2022-07-29
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
张广宇
作者简介:
张广宇(1990—),男,博士,研究方向为反应工艺。E-mail:zhanggy.qday@sinopec.com。
基金资助:
ZHANG Guangyu(), ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei
Received:
2022-06-20
Revised:
2022-07-29
Online:
2022-10-20
Published:
2022-11-10
Contact:
ZHANG Guangyu
摘要:
CO2催化转化合成碳酸丙烯酯(PC)是CO2资源化循环利用的典型反应,同时产物PC作为重要的极性溶剂和聚合物单体在锂离子电池和高性能聚合物等关键领域的需求激增,因此受到科研界和工业界的关注。本文简要介绍了从CO2出发催化转化合成PC的现有反应路径,详细介绍了目前应用最广泛的CO2-环氧丙烷(PO)羧基化反应体系,包括CO2-PO羧基化反应涉及的各种均相和非均相催化体系及其近期研究进展,重点总结了催化剂的设计、构效关系与反应机理。最后,提出了为实现CO2-PO羧基化合成PC工艺的可持续发展所需解决的问题,并对此提出了解决思路和未来发展方向,以期为CO2高效转化为绿色环保化学品PC技术的发展提供参考。
中图分类号:
张广宇, 赵健, 孙峰, 姜杰, 孙冰, 徐伟. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189.
ZHANG Guangyu, ZHAO Jian, SUN Feng, JIANG Jie, SUN Bing, XU Wei. Recent advances on catalytic conversion of CO2 into propylene carbonate: catalyst design, performance and reaction mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189.
1 | 邵斌, 孙哲毅, 章云, 等. 二氧化碳转化为合成气及高附加值产品的研究进展[J]. 化工进展, 2022, 41(3): 1136-1151. |
SHAO Bin, SUN Zheyi, ZHANG Yun, et al. Recent progresses in CO2 to syngas and high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1136-1151. | |
2 | FIGUERES C, QUERE C, MAHINDRA A, et al. Emissions are still rising ramp up the cuts[J]. Nature, 2018, 564(7734): 27-30. |
3 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
LIU Changjun, GUO Qiuting, YE Jingyun, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
4 | 徐永辉, 肖宝华, 冯艳艳, 等. 二氧化碳捕集材料的研究进展[J]. 精细化工, 2020, 38(8): 1513-1521. |
XU Yonghui, XIAO Baohua, FENG Yanyan, et al. Research progress of carbon dioxide capture materials[J]. Fine Chemicals, 2020, 38(8): 1513-1521. | |
5 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
6 | ATSBHA T, YOON T, SEONGHO P, et al. A review on the catalytic conversion of CO2 using H2 for synthesis of CO, methanol, and hydrocarbons[J]. Journal of CO2 Utilization, 2021, 44: 101413. |
7 | LIU X, SHEN X, LI H, et al. Ethylene carbon-free propylene carbonate-based electrolytes with excellent electrochemical compatibility for Li-ion batteries through engineering electrolyte solvation structure[J]. Advanced Energy Materials, 2021, 11(19): 2003905. |
8 | GE J, LI F, GAO Y, et al. A high-performance structural material based on maize straws and its biodegradable composites of poly (propylene carbonate)[J]. Cellulose, 2021, 28(18): 11381-11395. |
9 | KAMPHUIS A, PICCHIONI F, PESCARMONA P. CO2-fixation into cyclic and polymeric carbonates: Principles and applications[J]. Green Chemistry, 2019, 21(3): 406-448. |
10 | KUMAR P, SRIVASTAVA V, MISHRA I. Dimethyl carbonate synthesis from propylene carbonate with methanol using Cu-Zn-Al catalyst[J]. Energy & Fuels, 2015, 29(4): 2664-2675. |
11 | SCHAFFNER B, SCHAFFNER F, VEREVKIN S, et al. Organic carbonates as solvents in synthesis and catalysis[J]. Chemical Reviews, 2010, 110(8): 4554-4581. |
12 | 王公应, 刘绍英, 陈彤, 等. 碳酸酯绿色合成技术研究进展[J]. 精细化工, 2013, 30(4): 420-424. |
WANG Gongying, LIU Shaoying, CHEN Tong, et al. Progress in the green synthesis technology of carbonate[J]. Fine Chemicals, 2013, 30(4): 420-424. | |
13 | SHUKLA K, SRIVASTVA V. Synthesis of organic carbonates from alcoholysis of urea: a review[J]. Catalysis Reviews, 2017, 59(1): 1-43. |
14 | TOMISISHIGE H, YASUDA H, YOSHIDA Y, et al. Novel route to propylene carbonate selective synthesis from propylene glycol and carbon dioxide[J]. Catalysis Letters, 2004, 95(1/2): 45-49. |
15 | ZHOU X, YANG X, CHEN T, et al. Synthesis of propylene carbonate from carbon dioxide and O-chloropropanol[J]. Chinese Journal of Catalysis, 2009, 30(1): 7-8. |
16 | KHATIB S, OYAMA S. Direct oxidation of propylene to propylene oxide with molecular oxygen: a review[J]. Catalysis Reviews, 2015, 57(3): 306-344. |
17 | ADELEYE A, PATEL D, NIYOGI D, et al. Efficient and greener synthesis of propylene carbonate from carbon dioxide and propylene oxide[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18647-18657. |
18 | PESCARMONA P, TAHERIMEHR M. Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2 [J]. Catalysis Science & Technology, 2012, 2(11): 2169-2187. |
19 | MONICA F, BUONERBA A, PARADISO V, et al. [OSSO]-type Fe(III) metallate as single-component catalyst for the CO2 cycloaddition to epoxides[J]. Advanced Synthesis & Catalysis, 2019, 361(2): 283-288. |
20 | SEONG E, KIM J, KIM N, et al. Multifunctional and sustainable Fe-iminopyridine complexes for the synthesis of cyclic carbonate[J]. ChemSusChem, 2019, 12(2): 409-415. |
21 | KAMPHUIS A, MILOCCO F, KOITER L, et al. Highly selective single-component formazanate ferrate(II) catalysts for the conversion of CO2 into cyclic carbonates[J]. ChemSusChem, 2019, 12(15): 3635-3641. |
22 | ANDREA K, BUTLER E, BOWN T, et al. Iron complexes for cyclic carbonate and polycarbonate formation: selectivity control from ligand design and metal-center geometry[J]. Inorganic Chemistry, 2019, 58(16): 11231-11240. |
23 | LIU J, YANG G, LIU Y, et al. Efficient conversion of CO2 into cyclic carbonates at room temperature catalyzed by Al-salen and imidazolium hydrogen carbonate ionic liquids[J]. Green Chemistry, 2020, 22(14): 4509-4515. |
24 | RINTJEMA J, KLEIJ A. Aluminum-mediated formation of cyclic carbonates: benchmarking catalytic performance metrics[J]. ChemSusChem, 2017, 10(6): 1274-1282. |
25 | JIN X, DING J, XIA Q, et al. Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: catalyst design, performances and reaction mechanism[J]. Journal of CO2 Utilization, 2019, 34: 115-148. |
26 | DECORTES A, KLEIJ A. Ambient fixation of carbon dioxide using a ZnIIsalphen catalys[J]. ChemCatChem, 2011, 3(5): 831-834. |
27 | CLEGG W, HARRINGTON R, NORTH M, et al. Cyclic carbonate synthesis catalysed by bimetallic aluminium-salen complexes[J]. Chemistry, 2010, 16(23): 6828-6843. |
28 | TAHERIMEHR M, DECORTES A, AL-AMSYAR S, et al. A highly active Zn(salphen) catalyst for production of organic carbonates in a green CO2 medium[J]. Catalysis Science & Technology, 2012, 2(11): 2231-2237. |
29 | BEATTIE C, NORTH M, VILLUENDAS P, et al. Influence of temperature and pressure on cyclic carbonate synthesis catalyzed by bimetallic aluminum complexes and application to overall syn-bis-hydroxylation of alkenes[J]. The Journal of Organic Chemistry, 2013, 78(2): 419-426. |
30 | KIELLAND N, ESCUDERO-ADAN E, BELMONTE M, et al. Unsymmetrical octanuclear Schiff base clusters: Synthesis, characterization and catalysis[J]. Dalton Transactions, 2013, 42(5): 1427-1436. |
31 | GASTRO-GOMEZ F, SALASSA G, KLEIJ A, et al. A DFT study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes[J]. Chemistry, 2013, 19(20): 6289-6298. |
32 | DECORTES A, BELMONTE M, BENET-BUCHHOLZ J, et al. Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst[J]. Chemical Communications, 2010, 46(25): 4580-4582. |
33 | DECORTES A, CASTILLA M, KLEIJ A. Salen-complex-mediated formation of cyclic carbonates by cycloaddition of CO2 to epoxides[J]. Angewandte Chemie International Edition, 2010, 49(51): 9822-9837. |
34 | BYUN Y, LEE J, RYU J, et al. Titanium complexes containing tridentate [ONO] type Schiff base ligands for the cycloaddition reaction of CO2 to propylene oxide[J]. Polyhedron, 2018, 141: 191-197. |
35 | EMA T, MIYAZAKI Y, KOYAMA S, et al. A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates[J]. Chemical Communication, 2012, 48(37): 4489-4491. |
36 | EMA T, MIYAZAKI Y, SHIMONISHI J, et al. Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study[J]. Journal of American Chemical Society, 2014, 136(43): 15270-152749. |
37 | CALMANTI R, SELVA M, PEROSA A, et al. Tandem catalysis: one-pot synthesis of cyclic organic carbonates from olefins and carbon dioxide[J]. Green Chemistry, 2021, 23(5): 1921-1941. |
38 | PESCARMONA P. Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends[J]. Current Opinion in Green and Sustainable Chemistry, 2021, 29: 100457. |
39 | TAKEDA N, INOUE S. Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins[J]. Makromolekulare Chemie, 1978, 179(5): 1377-1381. |
40 | KRUPER W, DELLAR D. Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates[J]. Journal of Organic Chemistry, 1995, 60(3): 725-727. |
41 | BAI D, DUAN S, HAI L, et al. Carbon dioxide fixation by cycloaddition with epoxides, catalyzed by biomimetic metalloporphyrins[J]. ChemCatChem, 2012, 4(11): 1752-1758. |
42 | JIN L, JING H, CHANG T, et al. Metal porphyrin/phenyltrimethylammonium tribromide: High efficient catalysts for coupling reaction of CO2 and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(2): 262-266. |
43 | KIHARA N, HARA N, ENDO T. Catalytic activity of various salts in the reaction of 2,3-epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure[J]. The Journal of Organic Chemistry, 1993, 58(23): 6198-6202. |
44 | MONASSIER A, DELIA V, COKOJA M, et al. Synthesis of cyclic carbonates from epoxides and CO2 under mild conditions using a simple, highly efficient niobium-based catalyst[J]. ChemCatChem, 2013, 5(6): 1321-1324. |
45 | REN Y, SHIM J. Efficient synthesis of cyclic carbonates by MgII/phosphine-catalyzed coupling reactions of carbon dioxide and epoxides[J]. ChemCatChem, 2013, 5(6): 1344-1349. |
46 | DELIA V, GHANI A, MONASSIER A, et al. Dynamics of the NbCl5-catalyzed cycloaddition of propylene oxide and CO2: assessing the dual role of the nucleophilic Co-catalysts[J]. Chemistry, 2014, 20(37): 11870-11882. |
47 | ZHONG S, LIANG L, LIU B, et al. ZnBr2/DMF as simple and highly active Lewis acid–base catalysts for the cycloaddition of CO2 to propylene oxide[J]. Journal of CO2 Utilization, 2014, 6: 75-79. |
48 | BARTHEL A, SAIH Y, GIMENEZ M, et al. Highly integrated CO2 capture and conversion: Direct synthesis of cyclic carbonates from industrial flue gas[J]. Green Chemistry, 2016, 18(10): 3116-3123. |
49 | LIU X, ZHANG S, SONG Q, et al. Cooperative calcium-based catalysis with 1,8-diazabicyclo[5.4.0]- undec-7-ene for the cycloaddition of epoxides with CO2 at atmospheric pressure[J]. Green Chemistry, 2016, 18( 9): 2871-2876. |
50 | KASUGA K, KABATA N. The fixation of carbon dioxide with 1,2 -epoxypropane catalyzed by alkali-metal halide in the presence of a crown ether[J]. Inorganica Chimica Acta, 1997, 257(2): 277-278. |
51 | ZHU H, CHEN L, JIANG Y. Synthesis of propylene carbonate and some dialkyl carbonates in the presence of bifunctional catalyst compositions[J]. Polymers for Advanced Technologies, 1995, 7(8): 701-703. |
52 | THARUN J, MATHAI G, KATHALIKKATTIL A, et al. Microwave-assisted synthesis of cyclic carbonates by a formic acid/KI catalytic system[J]. Green Chemistry, 2013, 15(6): 1673-1677. |
53 | YANG Z, SUN J, CHENG W, et al. Biocompatible and recyclable amino acid binary catalyst for efficient chemical fixation of CO2 [J]. Catalysis Communications, 2014, 44: 6-9. |
54 | MA J, LIU J, ZHANG Z, et al. The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide[J]. Green Chemistry, 2012, 14(9): 2410-2420. |
55 | LIU N, XIE Y, WANG C, et al. Cooperative multifunctional organocatalysts for ambient conversion of carbon dioxide into cyclic carbonates[J]. ACS Catalysis, 2018, 8(11): 9945-9957. |
56 | ARAYACHUKIAT S, KONGTES C, BARTHEL A, et al. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6392-6397. |
57 | ALASSMY Y, PESCARMONA P. The role of water revisited and enhanced: a sustainable catalytic system for the conversion of CO2 into cyclic carbonates under mild conditions[J]. ChemSusChem, 2019, 12(16): 3856-3863. |
58 | KAWANAMI H, IKUSHIMA Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts[J]. Chemical Communications, 2000, 21: 2089-2090. |
59 | JIANG J, HUA R. Efficient DMF-catalyzed coupling of epoxides with CO2 under solvent-free conditions to afford cyclic carbonates[J]. Synthetic Communications, 2006, 36(21): 3141-3148. |
60 | YU K, CURCIC I, GABRIEL J, et al. Catalytic coupling of CO2 with epoxide over supported and unsupported amines[J]. Journal of Physical Chemistry A, 2010, 114(11): 3863-3872. |
61 | SHIELS R, JONES C. Homogeneous and heterogeneous 4-(N,N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate[J]. Journal of Molecular Catalysis A: Chemical, 2007, 261(2): 160-166. |
62 | ZHOU H, ZHANG W, LIU C, et al. CO2 adducts of N-heterocyclic carbenes thermal stability and catalytic activity toward the coupling of CO2 with epoxides[J]. The Journal of Organic Chemistry, 2008, 73(20): 8039 -8044. |
63 | AJITHA M, SURESH C. NHC catalyzed CO2 fixation with epoxides: Probable mechanisms reveal ter molecular pathway[J]. Tetrahedron Letters, 2011, 52(41): 5403-5406. |
64 | PENG J, DENG Y. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids[J]. New Journal of Chemistry, 2001, 25(4): 639-641. |
65 | WILHELM M, ANTHOFER M, COKOJA M, et al. Cycloaddition of carbon dioxide and epoxides using pentaerythritol and halides as dual catalyst system[J]. ChemSusChem, 2014, 7(5): 1357-1360. |
66 | WANG J, CHEGN W, SUN J, et al. Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids[J] RSC Advances, 2014, 4(5): 2360-2367. |
67 | SUN J, HAN L, CHENG W, et al. Efficient acid-base bifunctional catalysts for the fixation of CO2 with epoxides under metal- and solvent-free conditions[J]. ChemSusChem, 2011, 4(4): 502-507. |
68 | ZHANG X, ZHAO N, WEI W, et al. Chemical fixation of carbon dioxide to propylene carbonate over amine-functionalized silica catalysts[J]. Catalysis Today, 2006, 115(1/2/3/4): 102-106. |
69 | SANKAR M, AJITHKUMAR T, SANKAR G, et al. Supported imidazole as heterogeneous catalyst for the synthesis of cyclic carbonates from epoxides and CO2 [J]. Catalysis Communications, 2015, 59: 201-205. |
70 | XIAO L, LI F, PENG J, XIA C. Immobilized ionic liquid/zinc chloride: heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1/2): 265-269. |
71 | DELIA V, DONG H, ROSSINI A, et al. Cooperative effect of monopodal silica-supported niobium complex pairs enhancing catalytic cyclic carbonate production[J]. Journal of American Chemical Society, 2015, 137(24): 7728-7739. |
72 | BOBBINK F, MUYDEN A, GOPAKUMAR A, et al. Synthesis of cross-linked ionic poly(styrenes) and their application as catalysts for the synthesis of carbonates from CO2 and epoxides[J]. Chempluschem, 2017, 82(1): 144-151. |
73 | AN Q, LI Z, GRAFF R, et al. Core-double-shell Fe3O4@carbon@poly(In(III)-carboxylate) microspheres: cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived Al(III)-Salen bifunctional catalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4969-4978. |
74 | YANO T, MATSUI H, KOIKE T, et al. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry[J]. Chemical Communications, 1997, 12: 1129-1130. |
75 | YAMAGUCHI K, EBITANI K, YOSHIDA T, et al. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides[J]. Journal of the American Chemical Society, 1999, 121: 4526-4527. |
76 | ZHANG S, XIA Z, ZOU Y, et al. Interfacial frustrated lewis pairs of CeO2 activate CO2 for selective tandem transformation of olefins and CO2 into cyclic carbonates[J]. Journal of the American Chemical Society, 2019, 141(29): 11353-11357. |
77 | DAI W, YIN S, GUO R, et al. Synthesis of propylene carbonate from carbon dioxide and propylene oxide using Zn-Mg-Al composite oxide as high-efficiency catalyst[J]. Catalysis Letters, 2009, 136(1/2): 35-44. |
78 | SONG J, ZHANG Z, HU S, et al. MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chemistry, 2009, 11(7): 1031-1036. |
79 | THARUN J, MATHAI G, KATHALIKKATTIL A, et al. Exploring the catalytic potential of ZIF-90: solventless and co-catalyst-free synthesis of propylene carbonate from propylene oxide and CO2 [J]. Chempluschem, 2015, 80(4): 715-721. |
80 | THARUN J, MIBHIN K, ROSHAN R, et al. Ionic liquid tethered post functionalized ZIF-90 framework for the cycloaddition of propylene oxide and CO2 [J]. Green Chemistry, 2016, 18(8): 2479-2487. |
81 | KIM H, KIM J, LEE B, et al. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides[J]. Angewandte International Edition Chemie, 2000, 39(22): 4096-4098. |
82 | SHEN Y, DUAN W, SHI M. Phenol and organic bases co-catalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates[J]. Advanced Synthesis & Catalysis, 2003, 345(3): 337-340. |
83 | STEINBAUER J, KUBIS C, LUDWIG R, et al. Mechanistic study on the addition of CO2 to epoxides catalyzed by ammonium and phosphonium salts: a combined spectroscopic and kinetic approach[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(8): 10778-10788. |
84 | WANG J, SUN J, CHENG W, et al. Experimental and theoretical studies on hydrogen bond-promoted fixation of carbon dioxide and epoxides in cyclic carbonates[J]. Physical Chemistry Chemical Physics, 2012, 14(31): 11021-11026. |
85 | LIU M, WANG X, JIANG Y, et al. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis[J]. Catalysis Reviews, 2018, 61(2): 214-269. |
86 | HE J, WU T, ZHANG Z, et al. Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts[J]. Chemistry, 2007, 13(24): 6992-6997. |
87 | DELIA V, PELLETIER J, BASSET J. Cycloadditions to epoxides catalyzed by group III-V transition-metal complexes[J]. ChemCatChem, 2015, 7(13): 1906-1917. |
88 | ROSHAN K, PALISSERY R, KATHALIKKATTIL A, et al. A computational study of the mechanistic insights into base catalysed synthesis of cyclic carbonates from CO2: bicarbonate anion as an active species[J]. Catalysis Science & Technology, 2016, 6(11): 3997-4004. |
89 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
90 | SANKAR M, TARTE N, MANIKANDAN P. Effective catalytic system of zinc-substituted polyoxometalate for cycloaddition of CO2 to epoxides[J]. Applied Catalysis A: General, 2004, 276(1/2): 217-222. |
91 | HELDEBRANT D, JESSOP P, THOMAS C, et al. The reaction of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carbon dioxide[J]. The Journal of Organic Chemistry, 2005, 70(13): 5335-5338. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[3] | 王福安. 300kt/a环氧丙烷工艺反应器降耗减排分析[J]. 化工进展, 2023, 42(S1): 213-218. |
[4] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[5] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[6] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[7] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[8] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[9] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[10] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[11] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[12] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[13] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |