1 |
WANG Hou, YUAN Xingzhong, WU Yan, et al. Plasmonic Bi nanoparticles and BiOCl sheets as cocatalyst deposited on perovskite-type ZnSn(OH)6 microparticle with facet-oriented polyhedron for improved visible-light-driven photocatalysis[J]. Applied Catalysis B: Environmental, 2017, 209: 543-553.
|
2 |
ZHANG Yuanyi, XIN Xia, SUN Hui, et al. Porous ZnO-SnO2-Zn2SnO4 heterojunction nanofibers fabricated by electrospinning for enhanced ethanol sensing properties under UV irradiation[J]. Journal of Alloys and Compounds, 2021, 854: 157311.
|
3 |
CHEN Fei, YANG Qi, NIU Chenggang, et al. Enhanced visible light photocatalytic activity and mechanism of ZnSn(OH)6 nanocubes modified with AgI nanoparticles[J]. Catalysis Communications, 2016,73: 1-6.
|
4 |
XIONG Lunqiao, TANG Junwang. Strategies and challenges on selectivity of photocatalytic oxidation of organic substances[J]. Advanced Energy Materials, 2021, 11(8): 2003216.
|
5 |
FENG W H, PEI Z X, FANG Z B, et al. A novel high-photoactivity quaternary ZnSn(OH)6-graphene composite evolved from a 3D multilayer structure via a facile and green proton-mediated self-assembly method[J]. Journal of Materials Chemistry A, 2014, 2(21): 7802-7811.
|
6 |
FU Xianliang, LEUNG D Y C, WANG Xuxu, et al. Photocatalytic reforming of ethanol to H2 and CH4 over ZnSn(OH)6 nanocubes[J]. International Journal of Hydrogen Energy, 2011, 36(2): 1524-1530.
|
7 |
LU Yanfeng, HUANG Yu, CAO Junji, et al. Constructing Z-scheme SnO2/N-doped carbon quantum dots/ZnSn(OH)6 nanohybrids with high redox ability for NOx removal under VIS-NIR light[J]. Journal of Materials Chemistry A, 2019, 7(26): 15782-15793.
|
8 |
PENG Xinyi, JIANG Mengmeng, WANG Xinchen, et al. Photocatalytic purification of contaminated air in intensive care units by ZnSn(OH)6 nanoparticles[J]. Environmental Science and Pollution Research, 2021, 28(24): 31770-31777.
|
9 |
FU Xianliang, WANG Xuxu, DING Zhengxin, et al. Hydroxide ZnSn(OH)6: A promising new photocatalyst for benzene degradation[J]. Applied Catalysis B: Environmental, 2009, 91(1/2): 67-72.
|
10 |
QU Hongqiang, WU Weihong, XIE Jixing, et al. Zinc hydroxystannate-coated metal hydroxides as flame retardant and smoke suppression for flexible poly vinyl chloride[J]. Fire and Materials, 2009, 33(4): 201-210.
|
11 |
HAN Lixian, LIU Jie, WANG Zhengjun, et al. Shape-controlled synthesis of ZnSn(OH)6 crystallites and their HCHO-sensing properties[J]. CrystEngComm, 2012, 14(10): 3380-3386.
|
12 |
CHEN Q, MA S Y, JIAO H Y, et al. Sodium alginate assisted hydrothermal method to prepare praseodymium and cerium co-doped ZnSn(OH)6 hollow microspheres and synergistically enhanced ethanol sensing performance[J]. Sensors and Actuators B: Chemical, 2017, 252: 295-305.
|
13 |
WANG Linlin, TANG Kaibin, LIU Zhongping, et al. Single-crystalline ZnSn(OH)6 hollow cubes via self-templated synthesis at room temperature and their photocatalytic properties[J]. Journal of Materials Chemistry, 2011, 21(12): 4352-4357.
|
14 |
TANG Lanqin, ZHAO Zongyan, ZHOU Yong, et al. Series of ZnSn(OH)6 polyhedra: Enhanced CO2 dissociation activation and crystal facet-based homojunction boosting solar fuel synthesis[J]. Inorganic Chemistry, 2017, 56(10): 5704-5709.
|
15 |
GAO Guoming, ZHANG Lina, CHEN Qifeng, et al. Self-assembly approach toward polymeric carbon nitrides with regulated heptazine structure and surface groups for improving the photocatalytic performance[J]. Chemical Engineering Journal, 2021, 409: 127370.
|
16 |
JOSE M, NITHYA G, ROBERT R, et al. Formation and optical characterization of unique zinc hydroxy stannate nanostructures by a simple hydrothermal method[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(4): 2628-2637.
|
17 |
DONG Shuying, CUI Lingfang, ZHAO Yinlan, et al. Crystal structure and photocatalytic properties of perovskite MSn(OH)6 (M=Cu and Zn) composites with d10-d10 configuration[J]. Applied Surface Science, 2019, 463: 659-667.
|
18 |
FU Xianliang, HUANG Danwei, QIN Yong, et al. Effects of preparation method on the microstructure and photocatalytic performance of ZnSn(OH)6 [J]. Applied Catalysis B: Environmental, 2014, 148/149: 532-542.
|
19 |
REN Zhen, ZHOU Dunfan, ZHANG Liheng, et al. ZnSn(OH)6 photocatalyst for methylene blue degradation: electrolyte-dependent morphology and performance[J]. ChemistrySelect, 2018, 3(39): 10849-10856.
|
20 |
PLUBPHON N, THONGTEM S, THONGTEM T. Microwave-assisted synthesis of ZnSn(OH)6 used for photodegradation of methyl orange[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(12): 8763-8771.
|
21 |
ZHANG Yuanyuan, WANG Lili, MA Xiumei, et al. Amorphous carbon layer: An effective assistant for realizing near-infrared-activated photocatalysis[J]. Journal of Colloid and Interface Science, 2018, 531: 47-55.
|
22 |
CHEN Fei, YANG Qi, LI Xiaoming, et al. Promotion of ZnSn(OH)6 photoactivity by constructing heterojunction with Ag@Ag3PO4 nanoparticles: Visible light elimination of single or multiple dyes[J]. Catalysis Communications, 2016, 84: 137-141.
|
23 |
ZHANG Yuanyuan, WANG Lili, YANG Manli, et al. Carbon quantum dots sensitized ZnSn(OH)6 for visible light-driven photocatalytic water purification[J]. Applied Surface Science, 2019, 466: 515-524.
|
24 |
RAN Lei, HOU Jungang, CAO Shuyan, et al. Defect engineering of photocatalysts for solar energy conversion[J]. Solar RRL, 2020, 4(4): 1900487.
|
25 |
CHEN H, MA S Y, JIAO H Y, et al. The effect microstructure on the gas properties of Ag doped zinc oxide sensors: Spheres and sea-urchin-like nanostructures[J]. Journal of Alloys and Compounds, 2016, 687: 342-351.
|
26 |
MOHAMED R M, AAZAM E S. Photocatalytic conversion of 4-nitroaniline to p-phenylenediamine using Ni/ZnSn(OH)6 nanoparticles[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3329-3334.
|
27 |
LU Hongxia, LEI Jun, LI Xuexue, et al. Synthesis and characterization of carbon-doped ZnSn(OH)6 with enhanced photoactivity by hydrothermal method[J]. Crystal Research and Technology, 2016, 51(1): 11-15.
|
28 |
ZHANG Chen, HE Donghui, FU Shanshan, et al. Silver iodide decorated ZnSn(OH)6 hollow cube: Room-temperature preparation and application for highly efficient photocatalytic oxytetracycline degradation[J]. Chemical Engineering Journal, 2021, 421(1): 129810.
|
29 |
LI Huiquan, CUI Yumin, HONG Wenshan, et al. Enhanced photocatalytic activities of BiOI/ZnSn(OH)6 composites towards the degradation of phenol and photocatalytic H2 production[J]. Chemical Engineering Journal, 2013, 228: 1110-1120.
|
30 |
GOMARI N, KAZEMINEZHAD I, GHAHFAROKHI S E M. Impact of morphology evolution of ZnSn(OH)6 microcubes on photocatalytic activity of ZnSn(OH)6/SnO2/rGO ternary nanocomposites for efficient degradation of organic pollutants[J]. Optical Materials, 2021, 113: 110878.
|
31 |
YU Han, LI Changrong, CAO Zhouming, et al. Synthesis of TiO2/ZnSn(OH)6 hollow nano-composite via a simultaneous crystallization-etching route as photocatalyst[J]. Chinese Journal of Structural Chemistry, 2013, 32(12): 1829-1834.
|
32 |
FU Xianliang, WANG Jinghui, HUANG Danwei, et al. Trace amount of SnO2-decorated ZnSn(OH)6 as highly efficient photocatalyst for decomposition of gaseous benzene: Synthesis, photocatalytic activity, and the unrevealed synergistic effect between ZnSn(OH)6 and SnO2 [J]. ACS Catalysis, 2016, 6(2): 957-968.
|
33 |
LI Qiaoying, GUAN Zhipeng, WU Di, et al. Z-scheme BiOCl-Au-CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6958-6968.
|
34 |
YANG Yong, LIANG Yan, WANG Guozhong, et al. Enhanced gas-sensing properties of the hierarchical TiO2 hollow microspheres with exposed high-energy {001} crystal facets[J]. ACS Applied Materials & Interfaces, 2015, 7(44): 24902-24908.
|
35 |
FLEROV I N, GOREV M V, ALEKSANDROV K S, et al. Phase transitions in elpasolites (ordered perovskites)[J]. Materials Science and Engineering: R: Reports, 1998, 24(3): 81-151.
|
36 |
YU Han, LAI Riyu, ZHUANG Huaqiang, et al. Controllable synthesis of crystallographic facet-oriented polyhedral ZnSn(OH)6 microcrystals with assistance of a simple ion[J]. CrystEngComm, 2012, 14(24): 8530-8535.
|
37 |
WANG Hailian, ZHANG Weining, LU Lei, et al. Dual-metal hydroxide with ordering frustrated Lewis pairs for photoactivating CO2 to CO[J]. Applied Catalysis B: Environmental, 2021, 283: 119639.
|
38 |
LI Huiquan, HONG Wenshan, CUI Yumin, et al. High photocatalytic activity of C-ZnSn(OH)6 catalysts prepared by hydrothermal method[J]. Journal of Molecular Catalysis A: Chemical, 2013, 378: 164-173.
|
39 |
WANG Wenyan, MA Zhanwei, LIANG Runjuan, et al. Synthesis and photocatalytic performance of SnZn(OH)6 with different morphologies[J]. Journal of Materials Research, 2013, 28(12): 1582-1588.
|
40 |
COKOJA M, BRUCKMEIER C, RIEGER B, et al. Transformation of carbon dioxide with homogeneous transition-metal catalysts: A molecular solution to a global challenge?[J]. Angewandte Chemie International Edition, 2011, 50(37): 8510-8537.
|
41 |
CHEN Fei, YANG Qi, NIU Chenggang, et al. Plasmonic photocatalyst Ag@AgCl/ZnSn(OH)6: Synthesis, characterization and enhanced visible-light photocatalytic activity in the decomposition of dyes and phenol[J]. RSC Advances, 2015, 5(78): 63152-63164.
|
42 |
YIN Jingzhou, GAO Feng, WEI Chengzhen, et al. Controlled growth and applications of complex metal oxide ZnSn(OH)6 polyhedra[J]. Inorganic Chemistry, 2012, 51(20): 10990-10995.
|
43 |
WANG Wenyan, HE Yiming, WU Tinghua, et al. Preparation and photocatalytic performance of Ag/AgCl-modified cubic ZHS hollow particles[J]. Journal of Materials Research, 2014, 29(10): 1175-1182.
|
44 |
WANG Ming, CAO Xueli, HUANG Yunfang, et al. Solvent-free mechanochemical synthesis of well-dispersed single crystalline zinc hydroxystannate and their photocatalytic properties[J]. CrystEngComm, 2012, 14(8): 2950-2953.
|
45 |
HUANG Danwei, FU Xianliang, LONG Jinlin, et al. Hydrothermal synthesis of MSn(OH)6 (M=Co, Cu, Fe, Mg, Mn, Zn) and their photocatalytic activity for the destruction of gaseous benzene[J]. Chemical Engineering Journal, 2015, 269: 168-179.
|