化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3274-3284.DOI: 10.16085/j.issn.1000-6613.2018-1967
聂利富1,2,3(),徐喆1,2,3,柯善明1,2,3,曾燮榕1,2,3,林鹏1,2,3()
收稿日期:
2018-09-29
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
林鹏
作者简介:
聂利富(1993—),男,硕士研究生,研究方向为光电催化。E-mail:<email>nielifu@email.szu.edu.cn</email>。
基金资助:
Lifu NIE1,2,3(),Zhe XU1,2,3,Shanming KE1,2,3,Xierong ZENG1,2,3,Peng LIN1,2,3()
Received:
2018-09-29
Online:
2019-07-05
Published:
2019-07-05
Contact:
Peng LIN
摘要:
近年来,环境污染、能源枯竭问题日益严重,成为制约人类生存与发展的主要因素。光电催化技术能够同时实现污染物的降解与清洁能源的制备,有助于缓解环境污染与能源枯竭问题。作为典型的光(电)催化材料,TiO2具有光活性强、性质稳定、廉价易得、环境友好等诸多优点,数十年来已成为光催化及相关领域的研究热点。然而,TiO2存在的本征缺陷依然制约着其进一步推广应用,为此研究人员已提出多种方式对TiO2进行改性。其中贵金属/TiO2复合材料可显著提升TiO2的光学活性并拓宽其吸收波长范围,尤其是Au/TiO2材料体系已受到广泛关注和认可,表现出良好的应用前景。本文通过对目前Au/TiO2复合材料的发展现状进行了总结,首先简单介绍了Au和TiO2的化学性质及Au对TiO2光学性能的增强原理;随后对Au/TiO2复合材料的改性策略及相关作用机制展开讨论,包括Au对TiO2光学性能的影响及调控、修饰方法的选择与影响等;最后总结出目前Au/TiO2复合材料依然以克服TiO2的两大本征缺陷为主,探讨各类新型Au/TiO2复合材料有望使其得到逐步推广与实际应用。最后对目前Au/TiO2复合材料的研究现状进行系统总结并探讨该材料未来的研究和发展方向。
中图分类号:
聂利富, 徐喆, 柯善明, 曾燮榕, 林鹏. Au对TiO2光电催化材料的改性策略研究进展[J]. 化工进展, 2019, 38(07): 3274-3284.
Lifu NIE, Zhe XU, Shanming KE, Xierong ZENG, Peng LIN. Research progress of the modification of TiO2 by Au nanoparticles for photoelectrocatalytic applications[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3274-3284.
1 | LUOJie, CHENJiaoyan, WANGHaiyan, et al. Ligand-exchange assisted preparation of plasmonic Au/TiO2 nanotube arrays photoanodes for visible-light-driven photoelectrochemical water splitting[J]. Journal of Power Sources, 2016, 303: 287-293. |
2 | WULing, LIFang, XUYuanyuan, et al. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation [J]. Applied Catalysis B: Environmental, 2015, 164: 217-224. |
3 | JingxiangLOW, CHENGBei, YUJiaguo. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review [J]. Applied Surface Science, 2017, 392: 658-686. |
4 | 刘洋, 邹斌, 钱鲲,等. Au/TiO2纳米复合物增强可植入式葡萄糖传感器[J]. 苏州科技学院学报(自然科学版), 2016, 33(4): 48-51. |
LIUYang, ZOUBin, QIANKun, et al. An Au/TiO2 nanocomposite enhanced biosensor for embedding glucose monitoring[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2016, 33(4): 48-51. | |
5 | 霍小鹤,刘培培,刘小强,等. 以金纳米颗粒-二氧化钛纳米线阵列为支架的电化学免疫传感的构建及其应用[J]. 化学研究, 2017, 28(1): 113-119. |
HUOXiaohe, LIUPeipei, LIUXiaoqiang, et al. Construction of an electrochemical immunosensor based on Au nanoparticles-TiO2 nanowire arrays and its application[J]. Chemical Research, 2017, 28(1): 113-119. | |
6 | QIUPengxiang, XUChenmin, ZHOUNing, et al. Metal-free black phosphorus nanosheets-decorated graphitic carbon nitride nanosheets with C-P bonds for excellent photocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2018, 221: 27-35. |
7 | LIUDetao, LIShibin, ZHANGPeng, et al. Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer[J]. Nano Energy, 2017, 31: 462-468. |
8 | KANGYuyang, YANGYongqiang, YINLichang, et al. Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis [J]. Advanced Materials, 2016, 28(30): 6471-6477. |
9 | LIHao, LIJie, AIZhihui, et al. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives [J]. Angewandte Chemie: International Edition, 2018, 57(1): 122-138. |
10 | ZENGXiangkang, WANGZhouyou, WANGGen, et al. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection [J]. Applied Catalysis B: Environmental, 2017, 218: 163-173. |
11 | 翟宏菊齐兵,王立晶,等. Au-TiO2纳米复合材料的合成及其应用研究进展[J]. 化工新型材料, 2014, 42(9): 188-190. |
ZHAIHongju, QIBing, WANGLijing, alet . Research on synthesis and application in catalysis and detection of Au-TiO2 nanocomposites[J]. New Chemical Materials, 2014, 42(9): 188-190. | |
12 | KlanceKELLY, EduardoCORONADO, ZHAOLinlin, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment [J]. Journal of Physical Chemistry B, 2003, 107(3): 668-677. |
13 | CésarCLAVERO. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices [J]. Nature Photonics, 2014, 8(2): 95-103. |
14 | ZHANGJianming, JINXin, PabloiMORALES-GUZMAN, et al. Engineering the absorption and field enhancement properties of Au-TiO2 nanohybrids via whispering gallery mode resonances for photocatalytic water splitting [J]. ACS Nano, 2016, 10(4): 4496-4503. |
15 | 倪冰楠, 陆婷, 刘心娟,等. 纳米Au /TiO2复合物光催化降解亚甲基蓝 [J]. 环境工程学报, 2014, 8(12): 5372-5376. |
NIBingnan, LUTing, LIUXinjuan, et al. UV photocatalytic reduction of methylene blue by nano Au / TiO2 composites [J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5372-5376. | |
16 | WANGJiale, RomuloANDO, PedroCAMARGO. Controlling the selectivity of the surface plasmon resonance mediated oxidation of p-aminothiophenol on Au nanoparticles by charge transfer from UV-excited TiO2 [J]. Angewandte Chemie: International Edition, 2015, 54(23): 6909-6912. |
17 | 韩铁虎. Au/TiO2纳米复合材料光催化性能研究[D]. 杭州: 浙江理工大学, 2016. |
HANTiehu. The study on photocatalytic activities of Au-TiO2 nanocomposites[D]. Hangzhou: Zhejiang Sci-Tech University, 2016. | |
18 | CAIJingsheng, HUANGJianying , LAIYuekun. 3D Au-decorated BiMoO6 nanosheet/TiO2 nanotube array heterostructure with enhanced UV and visible-light photocatalytic activity [J]. Journal of Materials Chemistry A, 2017, 5(31): 16412-16421. |
19 | XINGXiaofang, FUHungsung, MIAOJianwei, et al. Metal-cluster-decorated TiO2 nanotube arrays: a composite heterostructure toward versatile photocatalytic and photoelectrochemical applications [J]. Small, 2015, 11(5): 554-567. |
20 | NhattruongNGUYEN, MarcoALTOMARE, JeongeunYOO, et al. Efficient photocatalytic H2 evolution: controlled dewetting dealloying to fabricate site selective high activity nanoporous Au particles on highly ordered TiO2 nanotube arrays [J]. Advanced Materials, 2015, 27(20): 3208-3215. |
21 | 尹云超. TiO2纳米管阵列改性及其光电催化性能研究 [D]. 西安: 西北大学, 2017. |
YINYunchao. Photoelecttrocatalytic performance research of modified TiO2 nanotube array [D]. Xi’an: Northweast University, 2017. | |
22 | MarcelloMARELLI, ClaudioEVANGELISTI, DIAMANTI Maria Vittoria, et al. TiO2 nanotubes arrays loaded with ligand-free Au nanoparticles: enhancement in photocatalytic activity[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31051-31058. |
23 | SUFengli, WANGTuo, LÜ Rui, et al. Dendritic Au/TiO2 nanorod arrays for visible-light driven photoelectrochemical water splitting [J]. Nanoscale, 2013, 5(19): 9001-9009. |
24 | LUOJie, LIDeliang, YANGYan, et al. Preparation of Au/reduced graphene oxide/hydrogenated TiO2 nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting [J]. Journal of Alloys and Compounds, 2016, 661: 380-388. |
25 | WANGWeikang, XUDifa, CHENGBei, et al. Hybrid carbon @TiO2 hollow spheres with enhanced photocatalytic CO2 reduction activity [J]. Journal of Materials Chemisctry A, 2017, 5(10): 5020-5029. |
26 | PANGXinchang, ZHAOLei, HANWei, et al. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals [J]. Nature Nanotechnology, 2013, 8(6): 426-431. |
27 | 姚翠萍, 王佳壮, 王晶,等. Au@TiO2纳米核壳与HMME结合体的制备及其光动力疗效初探 [J]. 光谱学与光谱分析, 2017, 37(12): 3670-3676. |
YAOCuiping, WANGJiazhuang, WANGJing, et al. Preparation of Au@TiO2-HMME and its photodynamic efficiency [J]. Spectroscopy and Spectral Analysis, 2017, 37(12): 3670-3676. | |
28 | JamesGOEBL, Ji BongJOO, MichaelDAHL, et al. Synthesis of tailored Au@TiO2 core-shell nanoparticles for photocatalytic reforming of ethanol [J]. Catalysis Today, 2014, 225: 90-95. |
29 | CaothangDINH, HoangYEN, FreddyKLEITZ, et al. Three-dimensional ordered assembly of thin-shell Au/TiO2 hollow nanospheres for enhanced visible-light driven photocatalysis [J]. Angewandte Chemie: International Edition, 2014, 53(26): 6618-6623. |
30 | ZHENGDajiang, PANGXinchang, WANGMengye, et al. Unconventional route to hairy plasmonic/semiconductor core/shell nanoparticles with precisely controlled dimensions and their use in solar energy conversion [J]. Chemistry of Materials, 2015, 27(15): 5271-5278. |
31 | 董任峰. 催化型微纳马达的制备与性能[D]. 广州: 华南理工大学, 2016. |
DONGRenfeng. Catalytic micro/nanomotors: fabrication and performance[D]. Guangzhou: South China University of Technology, 2016. | |
32 | DONGRenfeng, ZHANGQilu, GAOWei, et al. Highly efficient light-driven TiO2-Au Janus micromotors [J]. ACS Nano, 2016, 10(1): 839-844. |
33 | BumjinJANG, HONGAyoung, KANGHaeun, et al. Multiwavelength light-responsive Au/B-TiO2 Janus micromotors[J]. ACS Nano, 2017, 11(6): 6146-6154. |
34 | VarunSRIDHAR, Byung-WookPARK, MetinSITTI. Light-driven Janus hollow mesoporous TiO2–Au microswimmers[J]. Advanced Functional Materials. 2018, 28(25): 1-8. |
35 | WUYefei, DONGRenfeng, ZHANGQilu, et al. Dye-enhanced self-electrophoretic propulsion of light-driven TiO2–Au Janus micromotors[J]. Nano-Micro Lett, 2017, 9(3): 1-12. |
36 | WUBinghui, LIUDeyu, SyedMUBEEN, et al. Anisotropic growth of TiO2 onto gold nanorods for plasmon enhanced hydrogen production from water reduction [J]. Journal of American Chemical Society, 2016, 138(14): 1114-1117. |
37 | 孙玉泉. 哑铃状Au棒/TiO2的制备及其可见光催化分解水研究[J]. 辽宁化工, 2017, 46(9): 868-869. |
SUNYuquan. Synthesis of dumbbell-shaped Au-TiO2 hybrids and their application in photocatalytic water reduction reaction[J]. Liaoning Chemical Industry, 2017, 46(9): 868-869. | |
38 | LIUXueqin, JamesIOCOZZZIA, WANGYang, et al. Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation [J]. Energy & Environmental Science, 2017, 10(2): 402-434. |
39 | WANGChanglong, DidierASTRUC. Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion [J]. Chemical Society Reviews, 2014, 43(20): 7188-7216. |
40 | 冯聪, 余志超, 王新强,等.金纳米粒子的尺寸和含量对Au/TiO2纤维的紫外和可见光的光催化性能优化研究[C].//中国化学会. 中国化学会第30届学术年会摘要集-第二十七分会: 光化学. 大连: 中国化学会. 2016: 34. |
FENGCong, YUZhichao, WANGXinqiang, et al. Enhanced photocatalytic performance of Au/TiO2 nanofibers by precisely manipulating the dosage and size of Au nanoparticles under ultraviolet and visible light[C].//Chinese Chemical Society. Abstract of the 30th Academic Annual Conference of Chinese Chemical Society-chapter 27: photochemistry. Dalian: Chinese Chemical Society. 2016: 34. | |
41 | Seon MiYOO, SherbahadurRAWAL, JieunLEE. Size-dependence of plasmonic Au nanoparticles in photocatalytic behavior of Au/TiO2 and Au@SiO2/TiO2 [J]. Applied Catalysis A: General, 2015, 499: 47-54. |
42 | KunihiroYAMADA, KenMIYAJIMA, MafuneFUMITAKA. Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband [J]. Journal of Physical Chemistry C, 2007, 111(30): 11246-11251. |
43 | StephanLINK, MostafaEL-SAYED. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles [J]. Journal of Physical Chemistry B, 1999, 103(21): 4212-4217. |
44 | SandipanBERA, Ji EunLEE, RAWAL Sher Bahadur, et al. Size-dependent plasmonic effects of Au and Au@SiO2 nanoparticles in photocatalytic CO2 conversion reaction of Pt/TiO2 [J]. Applied Catalysis B: Environmental, 2016, 199: 55-63. |
45 | PhillipCHRISTOPHER, XINHongliang, AndiappanMARIMUTHU, et al. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures [J]. Nature Materials, 2012, 11(12): 1044-1050. |
46 | ZHANGXingguang, KEXuebin, ZHUHuaiyong. Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation [J]. Chemistry:A European Journal, 2012, 18(26): 8048-8056. |
47 | JinyoungCHOI, YounghoonSUNG, HakjongCHOI, et al. Fabrication of Au nanoparticle-decorated TiO2 nanotube arrays for stable photoelectrochemical water splitting by two-step anodization [J]. Ceramics International, 2017, 43(16): 14063-14067. |
48 | 王雷阳, 菅傲群, 桑胜波,等. Au/TiO2薄膜的制备及等离子体光催化性能研究 [J]. 化工新型材料, 2018, 46(4): 91-93. |
WANGLeiyang, JIANAoqun, SANGShengbo, et al. Preparation and plasmonic photocatalytic property of Au/TiO2 thin film [J]. New Chemical Materials, 2018, 46(4): 91-93. | |
49 | 孔少奇, 宋选民, 孙泽东,等. 磁控溅射制备的Au-TiO2纳米棒阵列的光降解研究 [J]. 稀有金属材料与工程, 2018, 47(4): 1113-1118. |
KONGShaoqi, SONGXuanmin, SUNZedong,et al. Well-aligned Au/TiO2 nanorods arrays for the photodegradation of MB by magnetron sputtering[J]. Rare Metal Materials and Engineering, 2018, 47(4): 1113-1118. | |
50 | ShikharMISRA, LILeigang, JIANJie, et al. Tailorable Au nanoparticles embedded in epitaxial TiO2 thin films for tunable optical properties [J]. ACS Applied & Materials Interfaces, 2018, 10(38): 32895-32902. |
51 | TakehitoYOSHIDA, TeiWATANABE, FumitoKIUCHI, et al. Pulsed-laser-deposited TiO2 nanocrystalline films supporting Au nanoparticles for visible-light-operating plasmonic photocatalysts[J]. Applied Physics A: Materials Science & Processing, 2016, 122(5): 510. |
52 | 高溢, 刘佳雯, 李中华. Au/ TiO2纳米光催化剂的制备及光催化性能研究 [J]. 化学工程师, 2016 (2): 1-3, 29. |
GAOYi, LIUJiawen, LIZhonghua. Preparation and photocatalytic properties of Au/TiO2 nano-photocatalysts[J]. Chemical Engineer, 2016(2): 1-3, 29. | |
53 | MohamadmohsenMOMENI, YousefGHAYEB. Fabrication, characterization and photocatalytic properties of Au/TiO2-WO3 nanotubular composite synthesized by photo-assisted deposition and electrochemical anodizing methods [J]. Journal of Molecular Catalysis A: Chemical, 2016, 417: 107-115. |
54 | BIANZhenfeng, TakashiTACHIKAWA, ZHANGPeng, et al. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity [J]. Journal of American Chemical Society, 2014, 136(1): 458-465. |
55 | LIYongkun, YUHongmei, ZHANGChangkun, et al. Enhancement of photoelectrochemical response by Au modified in TiO2 nanorods [J]. International Journal of Hydrogen Energy, 2013, 38(29): 13023-13030. |
56 | YUNJuyoung, SunhyeHWANG, JyongsikJANG. Fabrication of Au@Ag core/shell nanoparticles decorated TiO2 hollow structure for efficient light-harvesting in dye-sensitized solar cells [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 2055-2063. |
57 | 祁洪飞, 刘大博, 戴松喦, 等. Au/TiO2阵列材料的制备及其光催化性能研究 [J]. 贵金属, 2017, 38(s1): 116-119. |
QIHongfei, LIUDabo, DAISongyan , et al. Preparation and photocatalysis performance of Au/TiO2 array films [J]. Precious Metals, 2017, 38(s1): 116-119. | |
58 | ZHANGXing, LIUYang, ShuittongLEE, et al. Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting [J]. Energy & Environmental Science, 2014, 7(4): 1409-1419. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[4] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[5] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[6] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[7] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[8] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[9] | 杨鹏威, 于琳竹, 王放放, 蒋昊轩, 赵光金, 李琦, 杜铭哲, 马双忱. 氨储能在新型电力系统的应用前景、挑战及发展[J]. 化工进展, 2023, 42(8): 4432-4446. |
[10] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[11] | 薛凯, 王帅, 马金鹏, 胡晓阳, 种道彤, 王进仕, 严俊杰. 工业园区分布式综合能源系统的规划与调度[J]. 化工进展, 2023, 42(7): 3510-3519. |
[12] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[13] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[14] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[15] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |